/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.clustering;
import smile.data.AttributeDataset;
import smile.data.NominalAttribute;
import smile.data.parser.DelimitedTextParser;
import smile.validation.RandIndex;
import smile.validation.AdjustedRandIndex;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;
/**
*
* @author Haifeng Li
*/
public class SpectralClusteringTest {
public SpectralClusteringTest() {
}
@BeforeClass
public static void setUpClass() throws Exception {
}
@AfterClass
public static void tearDownClass() throws Exception {
}
@Before
public void setUp() {
}
@After
public void tearDown() {
}
/**
* Test of learn method, of class SpectralClustering.
*/
@Test
public void testUSPS() {
System.out.println("USPS");
DelimitedTextParser parser = new DelimitedTextParser();
parser.setResponseIndex(new NominalAttribute("class"), 0);
try {
AttributeDataset train = parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train"));
double[][] x = train.toArray(new double[train.size()][]);
int[] y = train.toArray(new int[train.size()]);
SpectralClustering spectral = new SpectralClustering(x, 10, 8.0);
AdjustedRandIndex ari = new AdjustedRandIndex();
RandIndex rand = new RandIndex();
double r = rand.measure(y, spectral.getClusterLabel());
double r2 = ari.measure(y, spectral.getClusterLabel());
System.out.format("Training rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.85);
assertTrue(r2 > 0.45);
} catch (Exception ex) {
System.err.println(ex);
}
}
/**
* Test of learn method, of class SpectralClustering.
*/
@Test
public void testUSPSNystrom() {
System.out.println("USPS Nystrom approximation");
DelimitedTextParser parser = new DelimitedTextParser();
parser.setResponseIndex(new NominalAttribute("class"), 0);
try {
AttributeDataset train = parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train"));
double[][] x = train.toArray(new double[train.size()][]);
int[] y = train.toArray(new int[train.size()]);
SpectralClustering spectral = new SpectralClustering(x, 10, 100, 8.0);
AdjustedRandIndex ari = new AdjustedRandIndex();
RandIndex rand = new RandIndex();
double r = rand.measure(y, spectral.getClusterLabel());
double r2 = ari.measure(y, spectral.getClusterLabel());
System.out.format("Training rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.8);
assertTrue(r2 > 0.35);
} catch (Exception ex) {
System.err.println(ex);
}
}
}