/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.gap; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import static org.junit.Assert.*; /** * * @author Haifeng Li */ public class GeneticAlgorithmTest { public GeneticAlgorithmTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } class Knapnack implements FitnessMeasure<BitString> { int limit = 9; // weight limit int[] weight = {2, 3, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; double[] reward = {6, 6, 6, 5, 1.3, 1.2, 1.1, 1.0, 1.1, 1.3, 1.0, 1.0, 0.9, 0.8, 0.6}; @Override public double fit(BitString chromosome) { double wsum = 0.0; double rew = 0.0; int[] bits = chromosome.bits(); for (int i = 0; i < weight.length; i++) { if (bits[i] == 1) { wsum += weight[i]; rew += reward[i]; } } // subtract penalty for exceeding weight if (wsum > limit) { rew -= 5 * (wsum - limit); } return rew; } } /** * Test of evolve method, of class GeneticAlgorithm. */ @Test public void testEvolve() { System.out.println("evolve"); BitString[] seeds = new BitString[100]; // The mutation parameters are set higher than usual to prevent premature convergence. for (int i = 0; i < seeds.length; i++) { seeds[i] = new BitString(15, new Knapnack(), BitString.Crossover.UNIFORM, 1.0, 0.2); } GeneticAlgorithm<BitString> instance = new GeneticAlgorithm<>(seeds, GeneticAlgorithm.Selection.TOURNAMENT); instance.setElitism(2); instance.setTournament(3, 0.95); BitString result = instance.evolve(1000, 18); assertEquals(18, result.fitness(), 1E-7); int[] best = {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; for (int i = 0; i < best.length; i++) { assertEquals(best[i], result.bits()[i]); } } }