/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.gap;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;
/**
*
* @author Haifeng Li
*/
public class GeneticAlgorithmTest {
public GeneticAlgorithmTest() {
}
@BeforeClass
public static void setUpClass() throws Exception {
}
@AfterClass
public static void tearDownClass() throws Exception {
}
@Before
public void setUp() {
}
@After
public void tearDown() {
}
class Knapnack implements FitnessMeasure<BitString> {
int limit = 9; // weight limit
int[] weight = {2, 3, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
double[] reward = {6, 6, 6, 5, 1.3, 1.2, 1.1, 1.0, 1.1, 1.3, 1.0, 1.0, 0.9, 0.8, 0.6};
@Override
public double fit(BitString chromosome) {
double wsum = 0.0;
double rew = 0.0;
int[] bits = chromosome.bits();
for (int i = 0; i < weight.length; i++) {
if (bits[i] == 1) {
wsum += weight[i];
rew += reward[i];
}
}
// subtract penalty for exceeding weight
if (wsum > limit) {
rew -= 5 * (wsum - limit);
}
return rew;
}
}
/**
* Test of evolve method, of class GeneticAlgorithm.
*/
@Test
public void testEvolve() {
System.out.println("evolve");
BitString[] seeds = new BitString[100];
// The mutation parameters are set higher than usual to prevent premature convergence.
for (int i = 0; i < seeds.length; i++) {
seeds[i] = new BitString(15, new Knapnack(), BitString.Crossover.UNIFORM, 1.0, 0.2);
}
GeneticAlgorithm<BitString> instance = new GeneticAlgorithm<>(seeds, GeneticAlgorithm.Selection.TOURNAMENT);
instance.setElitism(2);
instance.setTournament(3, 0.95);
BitString result = instance.evolve(1000, 18);
assertEquals(18, result.fitness(), 1E-7);
int[] best = {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
for (int i = 0; i < best.length; i++) {
assertEquals(best[i], result.bits()[i]);
}
}
}