/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.regression; import smile.data.AttributeDataset; import smile.data.parser.ArffParser; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import smile.math.Math; import smile.validation.CrossValidation; import smile.validation.LOOCV; import static org.junit.Assert.*; /** * * @author Haifeng Li */ public class RidgeRegressionTest { double[][] longley = { {234.289, 235.6, 159.0, 107.608, 1947, 60.323}, {259.426, 232.5, 145.6, 108.632, 1948, 61.122}, {258.054, 368.2, 161.6, 109.773, 1949, 60.171}, {284.599, 335.1, 165.0, 110.929, 1950, 61.187}, {328.975, 209.9, 309.9, 112.075, 1951, 63.221}, {346.999, 193.2, 359.4, 113.270, 1952, 63.639}, {365.385, 187.0, 354.7, 115.094, 1953, 64.989}, {363.112, 357.8, 335.0, 116.219, 1954, 63.761}, {397.469, 290.4, 304.8, 117.388, 1955, 66.019}, {419.180, 282.2, 285.7, 118.734, 1956, 67.857}, {442.769, 293.6, 279.8, 120.445, 1957, 68.169}, {444.546, 468.1, 263.7, 121.950, 1958, 66.513}, {482.704, 381.3, 255.2, 123.366, 1959, 68.655}, {502.601, 393.1, 251.4, 125.368, 1960, 69.564}, {518.173, 480.6, 257.2, 127.852, 1961, 69.331}, {554.894, 400.7, 282.7, 130.081, 1962, 70.551} }; double[] y = { 83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6, 114.2, 115.7, 116.9 }; double[] residuals = { -0.6008156, 1.5502732, 0.1032287, -1.2306486, -0.3355139, 0.2693345, 0.8776759, 0.1222429, -2.0086121, -0.4859826, 1.0663129, 1.2274906, -0.3835821, 0.2710215, 0.1978569, -0.6402823 }; public RidgeRegressionTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of learn method, of class RidgeRegression. */ @Test public void testLearn() { System.out.println("learn"); RidgeRegression model = new RidgeRegression(longley, y, 0.0); double rss = 0.0; int n = longley.length; for (int i = 0; i < n; i++) { double r = y[i] - model.predict(longley[i]); assertEquals(residuals[i], r, 1E-7); rss += r * r; } System.out.println("Training MSE = " + rss/n); model = new RidgeRegression(longley, y, 0.1); assertEquals(-1.354007e+03, model.intercept(), 1E-3); assertEquals(5.457700e-02, model.coefficients()[0], 1E-7); assertEquals(1.198440e-02, model.coefficients()[1], 1E-7); assertEquals(1.261978e-02, model.coefficients()[2], 1E-7); assertEquals(-1.856041e-01, model.coefficients()[3], 1E-7); assertEquals(7.218054e-01, model.coefficients()[4], 1E-7); assertEquals(5.884884e-01, model.coefficients()[5], 1E-7); LOOCV loocv = new LOOCV(n); rss = 0.0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(longley, loocv.train[i]); double[] trainy = Math.slice(y, loocv.train[i]); RidgeRegression ridge = new RidgeRegression(trainx, trainy, 0.1); double r = y[loocv.test[i]] - ridge.predict(longley[loocv.test[i]]); rss += r * r; } System.out.println("LOOCV MSE = " + rss/n); } /** * Test of predict method, of class RidgeRegression. */ @Test public void testPredict() { System.out.println("predict"); for (int lambda = 0; lambda <= 20; lambda+=2) { int n = longley.length; LOOCV loocv = new LOOCV(n); double rss = 0.0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(longley, loocv.train[i]); double[] trainy = Math.slice(y, loocv.train[i]); RidgeRegression ridge = new RidgeRegression(trainx, trainy, 0.01*lambda); double r = y[loocv.test[i]] - ridge.predict(longley[loocv.test[i]]); rss += r * r; } System.out.format("LOOCV MSE with lambda %.2f = %.3f%n", 0.01*lambda, rss/n); } } /** * Test of learn method, of class LinearRegression. */ @Test public void testCPU() { System.out.println("CPU"); ArffParser parser = new ArffParser(); parser.setResponseIndex(6); try { AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff")); double[][] datax = data.toArray(new double[data.size()][]); double[] datay = data.toArray(new double[data.size()]); int n = datax.length; int k = 10; CrossValidation cv = new CrossValidation(n, k); double rss = 0.0; for (int i = 0; i < k; i++) { double[][] trainx = Math.slice(datax, cv.train[i]); double[] trainy = Math.slice(datay, cv.train[i]); double[][] testx = Math.slice(datax, cv.test[i]); double[] testy = Math.slice(datay, cv.test[i]); RidgeRegression ridge = new RidgeRegression(trainx, trainy, 10.0); for (int j = 0; j < testx.length; j++) { double r = testy[j] - ridge.predict(testx[j]); rss += r * r; } } System.out.println("10-CV MSE = " + rss / n); } catch (Exception ex) { System.err.println(ex); } } }