/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.demo.classification;
import java.awt.Dimension;
import javax.swing.JFrame;
import smile.classification.LDA;
/**
*
* @author Haifeng Li
*/
@SuppressWarnings("serial")
public class LDADemo extends ClassificationDemo {
/**
* Constructor.
*/
public LDADemo() {
}
@Override
public double[][] learn(double[] x, double[] y) {
double[][] data = dataset[datasetIndex].toArray(new double[dataset[datasetIndex].size()][]);
int[] label = dataset[datasetIndex].toArray(new int[dataset[datasetIndex].size()]);
LDA lda = new LDA(data, label);
for (int i = 0; i < label.length; i++) {
label[i] = lda.predict(data[i]);
}
double trainError = error(label, label);
System.out.format("training error = %.2f%%\n", 100*trainError);
double[][] z = new double[y.length][x.length];
for (int i = 0; i < y.length; i++) {
for (int j = 0; j < x.length; j++) {
double[] p = {x[j], y[i]};
z[i][j] = lda.predict(p);
}
}
return z;
}
@Override
public String toString() {
return "Linear Disiminant Analysis";
}
public static void main(String argv[]) {
ClassificationDemo demo = new LDADemo();
JFrame f = new JFrame("Linear Disiminant Analysis");
f.setSize(new Dimension(1000, 1000));
f.setLocationRelativeTo(null);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.getContentPane().add(demo);
f.setVisible(true);
}
}