/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.classification; import smile.data.NominalAttribute; import smile.data.parser.DelimitedTextParser; import smile.data.AttributeDataset; import smile.data.parser.ArffParser; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import smile.math.Math; import smile.validation.LOOCV; import static org.junit.Assert.*; /** * * @author Haifeng Li */ public class NeuralNetworkTest { public NeuralNetworkTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of learn method, of class NeuralNetwork. */ @Test public void testIris() { System.out.println("Iris"); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); try { AttributeDataset iris = arffParser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/iris.arff")); double[][] x = iris.toArray(new double[iris.size()][]); int[] y = iris.toArray(new int[iris.size()]); int n = x.length; int p = x[0].length; double[] mu = Math.colMean(x); double[] sd = Math.colSd(x); for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { x[i][j] = (x[i][j] - mu[j]) / sd[j]; } } LOOCV loocv = new LOOCV(n); int error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); NeuralNetwork net = new NeuralNetwork(NeuralNetwork.ErrorFunction.CROSS_ENTROPY, NeuralNetwork.ActivationFunction.SOFTMAX, x[0].length, 10, 3); for (int j = 0; j < 20; j++) { net.learn(trainx, trainy); } if (y[loocv.test[i]] != net.predict(x[loocv.test[i]])) error++; } System.out.println("Neural network error = " + error); assertTrue(error <= 8); } catch (Exception ex) { System.err.println(ex); } } /** * Test of learn method, of class NeuralNetwork. */ @Test public void testIris2() { System.out.println("Iris binary"); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); try { AttributeDataset iris = arffParser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/iris.arff")); double[][] x = iris.toArray(new double[iris.size()][]); int[] y = iris.toArray(new int[iris.size()]); for (int i = 0; i < y.length; i++) { if (y[i] == 2) { y[i] = 1; } else { y[i] = 0; } } int n = x.length; int p = x[0].length; double[] mu = Math.colMean(x); double[] sd = Math.colSd(x); for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { x[i][j] = (x[i][j] - mu[j]) / sd[j]; } } LOOCV loocv = new LOOCV(n); int error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); NeuralNetwork net = new NeuralNetwork(NeuralNetwork.ErrorFunction.CROSS_ENTROPY, NeuralNetwork.ActivationFunction.LOGISTIC_SIGMOID, x[0].length, 10, 1); for (int j = 0; j < 30; j++) { net.learn(trainx, trainy); } if (y[loocv.test[i]] != net.predict(x[loocv.test[i]])) error++; } System.out.println("Neural network error = " + error); assertTrue(error <= 8); } catch (Exception ex) { System.err.println(ex); } } /** * Test of learn method, of class NeuralNetwork. */ @Test public void testSegment() { System.out.println("Segment"); ArffParser parser = new ArffParser(); parser.setResponseIndex(19); try { AttributeDataset train = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/segment-challenge.arff")); AttributeDataset test = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/segment-test.arff")); double[][] x = train.toArray(new double[0][]); int[] y = train.toArray(new int[0]); double[][] testx = test.toArray(new double[0][]); int[] testy = test.toArray(new int[0]); int p = x[0].length; double[] mu = Math.colMin(x); double[] sd = Math.colMax(x); for (int i = 0; i < x.length; i++) { for (int j = 0; j < p; j++) { x[i][j] = (x[i][j] - mu[j]) / sd[j]; } } for (int i = 0; i < testx.length; i++) { for (int j = 0; j < p; j++) { testx[i][j] = (testx[i][j] - mu[j]) / sd[j]; } } NeuralNetwork net = new NeuralNetwork(NeuralNetwork.ErrorFunction.CROSS_ENTROPY, NeuralNetwork.ActivationFunction.SOFTMAX, x[0].length, 30, Math.max(y)+1); for (int j = 0; j < 20; j++) { net.learn(x, y); } int error = 0; for (int i = 0; i < testx.length; i++) { if (net.predict(testx[i]) != testy[i]) { error++; } } System.out.format("Segment error rate = %.2f%%%n", 100.0 * error / testx.length); } catch (Exception ex) { System.err.println(ex); } } /** * Test of learn method, of class NeuralNetwork. */ @Test public void testSegmentLMS() { System.out.println("Segment LMS"); ArffParser parser = new ArffParser(); parser.setResponseIndex(19); try { AttributeDataset train = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/segment-challenge.arff")); AttributeDataset test = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/segment-test.arff")); double[][] x = train.toArray(new double[0][]); int[] y = train.toArray(new int[0]); double[][] testx = test.toArray(new double[0][]); int[] testy = test.toArray(new int[0]); int p = x[0].length; double[] mu = Math.colMin(x); double[] sd = Math.colMax(x); for (int i = 0; i < x.length; i++) { for (int j = 0; j < p; j++) { x[i][j] = (x[i][j] - mu[j]) / sd[j]; } } for (int i = 0; i < testx.length; i++) { for (int j = 0; j < p; j++) { testx[i][j] = (testx[i][j] - mu[j]) / sd[j]; } } NeuralNetwork net = new NeuralNetwork(NeuralNetwork.ErrorFunction.LEAST_MEAN_SQUARES, NeuralNetwork.ActivationFunction.LOGISTIC_SIGMOID, x[0].length, 30, Math.max(y)+1); for (int j = 0; j < 30; j++) { net.learn(x, y); } int error = 0; for (int i = 0; i < testx.length; i++) { if (net.predict(testx[i]) != testy[i]) { error++; } } System.out.format("Segment error rate = %.2f%%%n", 100.0 * error / testx.length); } catch (Exception ex) { System.err.println(ex); } } /** * Test of learn method, of class NeuralNetwork. */ @Test public void testUSPS() { System.out.println("USPS"); DelimitedTextParser parser = new DelimitedTextParser(); parser.setResponseIndex(new NominalAttribute("class"), 0); try { AttributeDataset train = parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train")); AttributeDataset test = parser.parse("USPS Test", smile.data.parser.IOUtils.getTestDataFile("usps/zip.test")); double[][] x = train.toArray(new double[train.size()][]); int[] y = train.toArray(new int[train.size()]); double[][] testx = test.toArray(new double[test.size()][]); int[] testy = test.toArray(new int[test.size()]); int p = x[0].length; double[] mu = Math.colMean(x); double[] sd = Math.colSd(x); for (int i = 0; i < x.length; i++) { for (int j = 0; j < p; j++) { x[i][j] = (x[i][j] - mu[j]) / sd[j]; } } for (int i = 0; i < testx.length; i++) { for (int j = 0; j < p; j++) { testx[i][j] = (testx[i][j] - mu[j]) / sd[j]; } } NeuralNetwork net = new NeuralNetwork(NeuralNetwork.ErrorFunction.CROSS_ENTROPY, NeuralNetwork.ActivationFunction.SOFTMAX, x[0].length, 40, Math.max(y)+1); for (int j = 0; j < 30; j++) { net.learn(x, y); } int error = 0; for (int i = 0; i < testx.length; i++) { if (net.predict(testx[i]) != testy[i]) { error++; } } System.out.format("USPS error rate = %.2f%%%n", 100.0 * error / testx.length); } catch (Exception ex) { System.err.println(ex); } } /** * Test of learn method, of class NeuralNetwork. */ @Test public void testUSPSLMS() { System.out.println("USPS LMS"); DelimitedTextParser parser = new DelimitedTextParser(); parser.setResponseIndex(new NominalAttribute("class"), 0); try { AttributeDataset train = parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train")); AttributeDataset test = parser.parse("USPS Test", smile.data.parser.IOUtils.getTestDataFile("usps/zip.test")); double[][] x = train.toArray(new double[train.size()][]); int[] y = train.toArray(new int[train.size()]); double[][] testx = test.toArray(new double[test.size()][]); int[] testy = test.toArray(new int[test.size()]); int p = x[0].length; double[] mu = Math.colMean(x); double[] sd = Math.colSd(x); for (int i = 0; i < x.length; i++) { for (int j = 0; j < p; j++) { x[i][j] = (x[i][j] - mu[j]) / sd[j]; } } for (int i = 0; i < testx.length; i++) { for (int j = 0; j < p; j++) { testx[i][j] = (testx[i][j] - mu[j]) / sd[j]; } } NeuralNetwork net = new NeuralNetwork(NeuralNetwork.ErrorFunction.LEAST_MEAN_SQUARES, NeuralNetwork.ActivationFunction.LOGISTIC_SIGMOID, x[0].length, 40, Math.max(y)+1); for (int j = 0; j < 30; j++) { net.learn(x, y); } int error = 0; for (int i = 0; i < testx.length; i++) { if (net.predict(testx[i]) != testy[i]) { error++; } } System.out.format("USPS error rate = %.2f%%%n", 100.0 * error / testx.length); } catch (Exception ex) { System.err.println(ex); } } }