/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.stat.distribution; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import static org.junit.Assert.*; /** * * @author Haifeng Li */ public class GaussianDistributionTest { public GaussianDistributionTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of constructor, of class GaussianDistribution. */ @Test public void testGaussianDistribution() { System.out.println("GaussianDistribution"); GaussianDistribution instance = new GaussianDistribution(3, 2.1); double[] data = new double[1000]; for (int i = 0; i < data.length; i++) data[i] = instance.rand(); GaussianDistribution est = new GaussianDistribution(data); assertEquals(0.0, (est.mean() - 3.0) / 3.0, 0.1); assertEquals(0.0, (est.sd() - 2.1) / 2.1, 0.1); } /** * Test of npara method, of class Exponential. */ @Test public void testNpara() { System.out.println("npara"); GaussianDistribution instance = new GaussianDistribution(3.0, 2.0); instance.rand(); assertEquals(2, instance.npara()); } /** * Test of mean method, of class Exponential. */ @Test public void testMean() { System.out.println("mean"); GaussianDistribution instance = new GaussianDistribution(0.0, 1.0); instance.rand(); assertEquals(0.0, instance.mean(), 1E-7); instance = new GaussianDistribution(1.0, 2.0); instance.rand(); assertEquals(1.0, instance.mean(), 1E-7); instance = new GaussianDistribution(2.0, 0.5); instance.rand(); assertEquals(2.0, instance.mean(), 1E-7); instance = new GaussianDistribution(3.0, 3.8); instance.rand(); assertEquals(3.0, instance.mean(), 1E-7); } /** * Test of var method, of class Exponential. */ @Test public void testVar() { System.out.println("var"); GaussianDistribution instance = new GaussianDistribution(0.0, 1.0); instance.rand(); assertEquals(1.0, instance.var(), 1E-7); instance = new GaussianDistribution(1.0, 2.0); instance.rand(); assertEquals(4.0, instance.var(), 1E-7); instance = new GaussianDistribution(2.0, 0.5); instance.rand(); assertEquals(0.25, instance.var(), 1E-7); instance = new GaussianDistribution(3.0, 3.8); instance.rand(); assertEquals(14.44, instance.var(), 1E-7); } /** * Test of sd method, of class Exponential. */ @Test public void testSd() { System.out.println("sd"); GaussianDistribution instance = new GaussianDistribution(0.0, 1.0); instance.rand(); assertEquals(1.0, instance.sd(), 1E-7); instance = new GaussianDistribution(1.0, 2.0); instance.rand(); assertEquals(2.0, instance.sd(), 1E-7); instance = new GaussianDistribution(2.0, 0.5); instance.rand(); assertEquals(0.5, instance.sd(), 1E-7); instance = new GaussianDistribution(3.0, 3.8); instance.rand(); assertEquals(3.8, instance.sd(), 1E-7); } /** * Test of entropy method, of class Exponential. */ @Test public void testEntropy() { System.out.println("entropy"); GaussianDistribution instance = new GaussianDistribution(0.0, 1.0); instance.rand(); assertEquals(1.418939, instance.entropy(), 1E-6); instance = new GaussianDistribution(1.0, 2.0); instance.rand(); assertEquals(2.112086, instance.entropy(), 1E-6); instance = new GaussianDistribution(2.0, 0.5); instance.rand(); assertEquals(0.7257914, instance.entropy(), 1E-6); instance = new GaussianDistribution(3.0, 3.8); instance.rand(); assertEquals(2.753940, instance.entropy(), 1E-6); } /** * Test of p method, of class Gaussian. */ @Test public void testP() { System.out.println("p"); GaussianDistribution instance = new GaussianDistribution(4.0, 3.0); instance.rand(); assertEquals(2.482015e-06, instance.p(-10), 1E-10); assertEquals(0.01799699, instance.p(-2), 1E-7); assertEquals(0.1064827, instance.p(2), 1E-7); assertEquals(0.1257944, instance.p(3), 1E-7); assertEquals(0.1329808, instance.p(4), 1E-7); assertEquals(0.1257944, instance.p(5), 1E-7); assertEquals(0.1064827, instance.p(6), 1E-7); assertEquals(0.0806569, instance.p(7), 1E-7); assertEquals(0.01799699, instance.p(10), 1E-7); assertEquals(8.85434e-08, instance.p(20), 1E-12); } /** * Test of logP method, of class Exponential. */ @Test public void testLogP() { System.out.println("logP"); GaussianDistribution instance = new GaussianDistribution(4.0, 3.0); instance.rand(); assertEquals(-12.90644, instance.logp(-10), 1E-5); assertEquals(-4.017551, instance.logp(-2), 1E-6); assertEquals(-2.517551, instance.logp(1.0), 1E-6); assertEquals(-2.239773, instance.logp(2.0), 1E-6); assertEquals(-2.073106, instance.logp(3.0), 1E-6); assertEquals(-2.017551, instance.logp(4.0), 1E-6); assertEquals(-4.017551, instance.logp(10), 1E-6); assertEquals(-16.23977, instance.logp(20), 1E-5); } /** * Test of cdf method, of class Gaussian. */ @Test public void testCdf() { System.out.println("cdf"); GaussianDistribution instance = new GaussianDistribution(4.0, 3.0); instance.rand(); assertEquals(1.530627e-06, instance.cdf(-10), 1E-12); assertEquals(0.02275013, instance.cdf(-2), 1E-7); assertEquals(0.2524925, instance.cdf(2), 1E-7); assertEquals(0.3694413, instance.cdf(3), 1E-7); assertEquals(0.5000000, instance.cdf(4), 1E-7); assertEquals(0.6305587, instance.cdf(5), 1E-7); assertEquals(0.7475075, instance.cdf(6), 1E-7); assertEquals(0.8413447, instance.cdf(7), 1E-7); assertEquals(0.9772499, instance.cdf(10), 1E-7); assertEquals(0.9998771, instance.cdf(15), 1E-7); assertEquals(1.0000000, instance.cdf(20), 1E-7); } /** * Test of cdf method, of class Gaussian. */ @Test public void testQuantile() { System.out.println("quantile"); GaussianDistribution instance = new GaussianDistribution(4.0, 3.0); instance.rand(); assertEquals(1.475136, instance.quantile(0.2), 1E-6); assertEquals(2.426798, instance.quantile(0.3), 1E-6); assertEquals(3.239959, instance.quantile(0.4), 1E-6); assertEquals(4.000000, instance.quantile(0.5), 1E-6); assertEquals(4.760041, instance.quantile(0.6), 1E-6); assertEquals(5.573202, instance.quantile(0.7), 1E-6); } }