/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.clustering;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;
import smile.data.SparseDataset;
import smile.data.parser.LibsvmParser;
import smile.validation.AdjustedRandIndex;
import smile.validation.RandIndex;
/**
*
* @author Haifeng
*/
public class SIBTest {
public SIBTest() {
}
@BeforeClass
public static void setUpClass() throws Exception {
}
@AfterClass
public static void tearDownClass() throws Exception {
}
@Before
public void setUp() {
}
@After
public void tearDown() {
}
/**
* Test of parse method, of class SIB.
*/
@Test
public void testParseNG20() throws Exception {
System.out.println("NG20");
LibsvmParser parser = new LibsvmParser();
try {
SparseDataset train = parser.parse("NG20 Train", smile.data.parser.IOUtils.getTestDataFile("libsvm/news20.dat"));
SparseDataset test = parser.parse("NG20 Test", smile.data.parser.IOUtils.getTestDataFile("libsvm/news20.t.dat"));
int[] y = train.toArray(new int[train.size()]);
int[] testy = test.toArray(new int[test.size()]);
SIB sib = new SIB(train, 20, 100, 8);
System.out.println(sib);
AdjustedRandIndex ari = new AdjustedRandIndex();
RandIndex rand = new RandIndex();
double r = rand.measure(y, sib.getClusterLabel());
double r2 = ari.measure(y, sib.getClusterLabel());
System.out.format("Training rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.85);
assertTrue(r2 > 0.2);
int[] p = new int[test.size()];
for (int i = 0; i < test.size(); i++) {
p[i] = sib.predict(test.get(i).x);
}
r = rand.measure(testy, p);
r2 = ari.measure(testy, p);
System.out.format("Testing rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2);
assertTrue(r > 0.85);
assertTrue(r2 > 0.2);
} catch (Exception ex) {
System.err.println(ex);
}
}
}