/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.clustering; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import static org.junit.Assert.*; import smile.data.SparseDataset; import smile.data.parser.LibsvmParser; import smile.validation.AdjustedRandIndex; import smile.validation.RandIndex; /** * * @author Haifeng */ public class SIBTest { public SIBTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of parse method, of class SIB. */ @Test public void testParseNG20() throws Exception { System.out.println("NG20"); LibsvmParser parser = new LibsvmParser(); try { SparseDataset train = parser.parse("NG20 Train", smile.data.parser.IOUtils.getTestDataFile("libsvm/news20.dat")); SparseDataset test = parser.parse("NG20 Test", smile.data.parser.IOUtils.getTestDataFile("libsvm/news20.t.dat")); int[] y = train.toArray(new int[train.size()]); int[] testy = test.toArray(new int[test.size()]); SIB sib = new SIB(train, 20, 100, 8); System.out.println(sib); AdjustedRandIndex ari = new AdjustedRandIndex(); RandIndex rand = new RandIndex(); double r = rand.measure(y, sib.getClusterLabel()); double r2 = ari.measure(y, sib.getClusterLabel()); System.out.format("Training rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2); assertTrue(r > 0.85); assertTrue(r2 > 0.2); int[] p = new int[test.size()]; for (int i = 0; i < test.size(); i++) { p[i] = sib.predict(test.get(i).x); } r = rand.measure(testy, p); r2 = ari.measure(testy, p); System.out.format("Testing rand index = %.2f%%\tadjusted rand index = %.2f%%%n", 100.0 * r, 100.0 * r2); assertTrue(r > 0.85); assertTrue(r2 > 0.2); } catch (Exception ex) { System.err.println(ex); } } }