/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.regression; import smile.data.Attribute; /** * Abstract regression model trainer. * * @param <T> the type of input object. * * @author Haifeng Li */ public abstract class RegressionTrainer <T> { /** * The feature attributes. This is optional since most classifiers can only * work on real-valued attributes. */ Attribute[] attributes; /** * Constructor. */ public RegressionTrainer() { } /** * Constructor. * @param attributes the attributes of independent variable. */ public RegressionTrainer(Attribute[] attributes) { this.attributes = attributes; } /** * Sets feature attributes. This is optional since most regression models * can only work on real-valued attributes. * * @param attributes the feature attributes. */ public void setAttributes(Attribute[] attributes) { this.attributes = attributes; } /** * Learns a regression model with given training data. * * @param x the training instances. * @param y the training response values. * @return a trained regression model. */ public abstract Regression<T> train(T[] x, double[] y); }