/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.math.distance; import java.io.Serializable; /** * In coding theory, the Lee distance is a distance between two strings * x<sub>1</sub>x<sub>2</sub>...x<sub>n</sub> and y<sub>1</sub>y<sub>2</sub>...y<sub>n</sub> * of equal length n over the q-ary alphabet {0,1,...,q-1} of size q ≥ 2, defined as * <p> * sum min(|x<sub>i</sub>-y<sub>i</sub>|, q-|x<sub>i</sub>-y<sub>i</sub>|) * <p> * If q = 2 or q = 3 the Lee distance coincides with the Hamming distance. * @author Haifeng Li */ public class LeeDistance implements Metric<int[]>, Serializable { private static final long serialVersionUID = 1L; private int q; /** * Constructor with a given size q of alphabet. * @param q the size of q-ary alphabet. */ public LeeDistance(int q) { if (q < 2) throw new IllegalArgumentException(String.format("The size of q-ary alphabet has to be larger than 1: q = %d", q)); this.q = q; } @Override public String toString() { return String.format("Lee distance (q = %d)", q); } @Override public double d(int[] x, int[] y) { if (x.length != y.length) throw new IllegalArgumentException(String.format("Arrays have different length: x[%d], y[%d]", x.length, y.length)); int dist = 0; for (int i = 0; i < x.length; i++) { double d = Math.abs(x[i] - y[i]); dist += Math.min(d, q-d); } return dist; } }