/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.regression; import smile.data.AttributeDataset; import smile.data.parser.ArffParser; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import smile.math.Math; import smile.validation.CrossValidation; import smile.validation.LOOCV; import static org.junit.Assert.*; /** * * @author Haifeng Li */ public class LASSOTest { public LASSOTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /* @Test public void testToy() { double[][] A = { {1, 0, 0, 0.5}, {0, 1, 0.2, 0.3}, {0, 0.1, 1, 0.2} }; double[] x0 = {1, 0, 1, 0}; // original signal double[] y = new double[A.length]; Math.ax(A, x0, y); // measurements with no noise LASSO lasso = new LASSO(A, y, 0.01, 0.01, 500); double rss = 0.0; int n = A.length; for (int i = 0; i < n; i++) { double r = y[i] - lasso.predict(A[i]); rss += r * r; } System.out.println("MSE = " + rss / n); assertEquals(0.0, lasso.intercept(), 1E-4); double[] w = {0.9930, 0.0004, 0.9941, 0.0040}; for (int i = 0; i < w.length; i++) { assertEquals(w[i], lasso.coefficients()[i], 1E-4); } } */ @Test public void testToy2() { double[][] A = { {1, 0, 0, 0.5}, {0, 1, 0.2, 0.3}, {1, 0.5, 0.2, 0.3}, {0, 0.1, 0, 0.2}, {0, 0.1, 1, 0.2} }; double[] x0 = {1, 0, 1, 0}; // original signal double[] y = new double[A.length]; Math.ax(A, x0, y); // measurements with no noise for (int i = 0; i < y.length; i++) { y[i] += 5; } LASSO lasso = new LASSO(A, y, 0.1, 0.001, 500); double rss = 0.0; int n = A.length; for (int i = 0; i < n; i++) { double r = y[i] - lasso.predict(A[i]); rss += r * r; } System.out.println("MSE = " + rss / n); assertEquals(5.0259443688265355, lasso.intercept(), 1E-7); double[] w = {0.9659945126777854, -3.7147706312985876E-4, 0.9553629503697613, 9.416740009376934E-4}; for (int i = 0; i < w.length; i++) { assertEquals(w[i], lasso.coefficients()[i], 1E-5); } } /** * Test of learn method, of class RidgeRegression. */ @Test public void testLongley() { System.out.println("longley"); double[][] longley = { {234.289, 235.6, 159.0, 107.608, 1947, 60.323}, {259.426, 232.5, 145.6, 108.632, 1948, 61.122}, {258.054, 368.2, 161.6, 109.773, 1949, 60.171}, {284.599, 335.1, 165.0, 110.929, 1950, 61.187}, {328.975, 209.9, 309.9, 112.075, 1951, 63.221}, {346.999, 193.2, 359.4, 113.270, 1952, 63.639}, {365.385, 187.0, 354.7, 115.094, 1953, 64.989}, {363.112, 357.8, 335.0, 116.219, 1954, 63.761}, {397.469, 290.4, 304.8, 117.388, 1955, 66.019}, {419.180, 282.2, 285.7, 118.734, 1956, 67.857}, {442.769, 293.6, 279.8, 120.445, 1957, 68.169}, {444.546, 468.1, 263.7, 121.950, 1958, 66.513}, {482.704, 381.3, 255.2, 123.366, 1959, 68.655}, {502.601, 393.1, 251.4, 125.368, 1960, 69.564}, {518.173, 480.6, 257.2, 127.852, 1961, 69.331}, {554.894, 400.7, 282.7, 130.081, 1962, 70.551} }; double[] y = { 83.0, 88.5, 88.2, 89.5, 96.2, 98.1, 99.0, 100.0, 101.2, 104.6, 108.4, 110.8, 112.6, 114.2, 115.7, 116.9 }; double rss = 0.0; int n = longley.length; LOOCV loocv = new LOOCV(n); for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(longley, loocv.train[i]); double[] trainy = Math.slice(y, loocv.train[i]); LASSO lasso = new LASSO(trainx, trainy, 0.1); double r = y[loocv.test[i]] - lasso.predict(longley[loocv.test[i]]); rss += r * r; } System.out.println("LOOCV MSE = " + rss / n); assertEquals(2.0012529348358212, rss/n, 1E-4); } /** * Test of learn method, of class LinearRegression. */ @Test public void testCPU() { System.out.println("CPU"); ArffParser parser = new ArffParser(); parser.setResponseIndex(6); try { AttributeDataset data = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/cpu.arff")); double[][] datax = data.toArray(new double[data.size()][]); double[] datay = data.toArray(new double[data.size()]); int n = datax.length; int k = 10; CrossValidation cv = new CrossValidation(n, k); double rss = 0.0; for (int i = 0; i < k; i++) { double[][] trainx = Math.slice(datax, cv.train[i]); double[] trainy = Math.slice(datay, cv.train[i]); double[][] testx = Math.slice(datax, cv.test[i]); double[] testy = Math.slice(datay, cv.test[i]); LASSO lasso = new LASSO(trainx, trainy, 50.0); for (int j = 0; j < testx.length; j++) { double r = testy[j] - lasso.predict(testx[j]); rss += r * r; } } System.out.println("10-CV MSE = " + rss / n); } catch (Exception ex) { System.err.println(ex); } } }