/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.feature;
import smile.validation.Accuracy;
import smile.classification.LDA;
import smile.data.NominalAttribute;
import smile.data.parser.DelimitedTextParser;
import smile.data.AttributeDataset;
import smile.data.parser.ArffParser;
import smile.sort.QuickSort;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import static org.junit.Assert.*;
/**
*
* @author Haifeng Li
*/
public class SumSquaresRatioTest {
public SumSquaresRatioTest() {
}
@BeforeClass
public static void setUpClass() throws Exception {
}
@AfterClass
public static void tearDownClass() throws Exception {
}
@Before
public void setUp() {
}
@After
public void tearDown() {
}
/**
* Test of rank method, of class SumSquaresRatio.
*/
@Test
public void testRank() {
System.out.println("rank");
try {
ArffParser arffParser = new ArffParser();
arffParser.setResponseIndex(4);
AttributeDataset iris = arffParser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/iris.arff"));
double[][] x = iris.toArray(new double[iris.size()][]);
int[] y = iris.toArray(new int[iris.size()]);
SumSquaresRatio ssr = new SumSquaresRatio();
double[] ratio = ssr.rank(x, y);
assertEquals(4, ratio.length);
assertEquals(1.6226463, ratio[0], 1E-7);
assertEquals(0.6444144, ratio[1], 1E-7);
assertEquals(16.0412833, ratio[2], 1E-7);
assertEquals(13.0520327, ratio[3], 1E-7);
} catch (Exception ex) {
System.err.println(ex);
}
}
/**
* Test of learn method, of class SumSquaresRatio.
*/
@Test
public void testLearn() {
System.out.println("USPS");
try {
DelimitedTextParser parser = new DelimitedTextParser();
parser.setResponseIndex(new NominalAttribute("class"), 0);
AttributeDataset train = parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train"));
AttributeDataset test = parser.parse("USPS Test", smile.data.parser.IOUtils.getTestDataFile("usps/zip.test"));
double[][] x = train.toArray(new double[train.size()][]);
int[] y = train.toArray(new int[train.size()]);
double[][] testx = test.toArray(new double[test.size()][]);
int[] testy = test.toArray(new int[test.size()]);
SumSquaresRatio ssr = new SumSquaresRatio();
double[] score = ssr.rank(x, y);
int[] index = QuickSort.sort(score);
int p = 135;
int n = x.length;
double[][] xx = new double[n][p];
for (int j = 0; j < p; j++) {
for (int i = 0; i < n; i++) {
xx[i][j] = x[i][index[255-j]];
}
}
int testn = testx.length;
double[][] testxx = new double[testn][p];
for (int j = 0; j < p; j++) {
for (int i = 0; i < testn; i++) {
testxx[i][j] = testx[i][index[255-j]];
}
}
LDA lda = new LDA(xx, y);
int[] prediction = new int[testn];
for (int i = 0; i < testn; i++) {
prediction[i] = lda.predict(testxx[i]);
}
double accuracy = new Accuracy().measure(testy, prediction);
System.out.format("SSR %.2f%%%n", 100 * accuracy);
} catch (Exception ex) {
System.err.println(ex);
}
}
}