/******************************************************************************* * Copyright (c) 2010 Haifeng Li * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ package smile.classification; import smile.data.NominalAttribute; import java.text.ParseException; import smile.data.parser.DelimitedTextParser; import smile.data.AttributeDataset; import smile.data.parser.ArffParser; import java.io.IOException; import org.junit.After; import org.junit.AfterClass; import org.junit.Before; import org.junit.BeforeClass; import org.junit.Test; import static org.junit.Assert.*; /** * * @author Haifeng Li */ public class KNNTest { public KNNTest() { } @BeforeClass public static void setUpClass() throws Exception { } @AfterClass public static void tearDownClass() throws Exception { } @Before public void setUp() { } @After public void tearDown() { } /** * Test of learn method, of class KNN. */ @Test public void testLearn_3args() { System.out.println("learn"); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); try { AttributeDataset iris = arffParser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/iris.arff")); double[][] x = iris.toArray(new double[0][]); int[] y = iris.toArray(new int[0]); KNN<double[]> knn = KNN.learn(x, y, 1); int error = 0; for (int i = 0; i < x.length; i++) { if (knn.predict(x[i]) != y[i]) { error++; } } System.out.println("1-nn error = " + error); assertEquals(6, error); knn = KNN.learn(x, y, 3); error = 0; for (int i = 0; i < x.length; i++) { if (knn.predict(x[i]) != y[i]) { error++; } } System.out.println("3-nn error = " + error); assertEquals(6, error); knn = KNN.learn(x, y, 5); error = 0; for (int i = 0; i < x.length; i++) { if (knn.predict(x[i]) != y[i]) { error++; } } System.out.println("5-nn error = " + error); assertEquals(5, error); knn = KNN.learn(x, y, 7); error = 0; for (int i = 0; i < x.length; i++) { if (knn.predict(x[i]) != y[i]) { error++; } } System.out.println("7-nn error = " + error); assertEquals(5, error); knn = KNN.learn(x, y, 9); error = 0; for (int i = 0; i < x.length; i++) { if (knn.predict(x[i]) != y[i]) { error++; } } System.out.println("9-nn error = " + error); assertEquals(5, error); knn = KNN.learn(x, y, 11); error = 0; for (int i = 0; i < x.length; i++) { if (knn.predict(x[i]) != y[i]) { error++; } } System.out.println("11-nn error = " + error); assertEquals(4, error); knn = KNN.learn(x, y, 13); error = 0; for (int i = 0; i < x.length; i++) { if (knn.predict(x[i]) != y[i]) { error++; } } System.out.println("13-nn error = " + error); assertEquals(5, error); knn = KNN.learn(x, y, 15); error = 0; for (int i = 0; i < x.length; i++) { if (knn.predict(x[i]) != y[i]) { error++; } } System.out.println("15-nn error = " + error); assertEquals(4, error); } catch (Exception ex) { System.err.println(ex); } } /** * Test of learn method, of class KNN. */ @Test public void testSegment() throws ParseException { System.out.println("Segment"); ArffParser parser = new ArffParser(); parser.setResponseIndex(19); try { AttributeDataset train = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/segment-challenge.arff")); AttributeDataset test = parser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/segment-test.arff")); double[][] x = train.toArray(new double[0][]); int[] y = train.toArray(new int[0]); double[][] testx = test.toArray(new double[0][]); int[] testy = test.toArray(new int[0]); KNN<double[]> knn = KNN.learn(x, y); int error = 0; for (int i = 0; i < testx.length; i++) { if (knn.predict(testx[i]) != testy[i]) { error++; } } System.out.format("Segment error rate = %.2f%%%n", 100.0 * error / testx.length); assertEquals(39, error); } catch (IOException ex) { System.err.println(ex); } } /** * Test of learn method, of class KNN. */ @Test public void testUSPS() { System.out.println("USPS"); DelimitedTextParser parser = new DelimitedTextParser(); parser.setResponseIndex(new NominalAttribute("class"), 0); try { AttributeDataset train = parser.parse("USPS Train", smile.data.parser.IOUtils.getTestDataFile("usps/zip.train")); AttributeDataset test = parser.parse("USPS Test", smile.data.parser.IOUtils.getTestDataFile("usps/zip.test")); double[][] x = train.toArray(new double[train.size()][]); int[] y = train.toArray(new int[train.size()]); double[][] testx = test.toArray(new double[test.size()][]); int[] testy = test.toArray(new int[test.size()]); KNN<double[]> knn = KNN.learn(x, y); int error = 0; for (int i = 0; i < testx.length; i++) { if (knn.predict(testx[i]) != testy[i]) { error++; } } System.out.format("USPS error rate = %.2f%%%n", 100.0 * error / testx.length); assertEquals(113, error); } catch (Exception ex) { System.err.println(ex); } } }