package org.apache.lucene.search.suggest.analyzing; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.TokenStream; import org.apache.lucene.analysis.TokenStreamToAutomaton; import org.apache.lucene.search.suggest.InputIterator; import org.apache.lucene.search.suggest.Lookup; import org.apache.lucene.store.ByteArrayDataInput; import org.apache.lucene.store.ByteArrayDataOutput; import org.apache.lucene.store.DataInput; import org.apache.lucene.store.DataOutput; import org.apache.lucene.util.ArrayUtil; import org.apache.lucene.util.BytesRef; import org.apache.lucene.util.CharsRef; import org.apache.lucene.util.IOUtils; import org.apache.lucene.util.IntsRef; import org.apache.lucene.util.OfflineSorter; import org.apache.lucene.util.UnicodeUtil; import org.apache.lucene.util.automaton.Automaton; import org.apache.lucene.util.automaton.BasicOperations; import org.apache.lucene.util.automaton.SpecialOperations; import org.apache.lucene.util.automaton.State; import org.apache.lucene.util.automaton.Transition; import org.apache.lucene.util.fst.Builder; import org.apache.lucene.util.fst.ByteSequenceOutputs; import org.apache.lucene.util.fst.FST; import org.apache.lucene.util.fst.FST.BytesReader; import org.apache.lucene.util.fst.PairOutputs; import org.apache.lucene.util.fst.PairOutputs.Pair; import org.apache.lucene.util.fst.PositiveIntOutputs; import org.apache.lucene.util.fst.Util; import org.apache.lucene.util.fst.Util.Result; import org.apache.lucene.util.fst.Util.TopResults; import java.io.File; import java.io.IOException; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.HashSet; import java.util.List; import java.util.Set; /** * Suggester that first analyzes the surface form, adds the * analyzed form to a weighted FST, and then does the same * thing at lookup time. This means lookup is based on the * analyzed form while suggestions are still the surface * form(s). * * <p> * This can result in powerful suggester functionality. For * example, if you use an analyzer removing stop words, * then the partial text "ghost chr..." could see the * suggestion "The Ghost of Christmas Past". Note that * position increments MUST NOT be preserved for this example * to work, so you should call the constructor with * <code>preservePositionIncrements</code> parameter set to * false * * <p> * If SynonymFilter is used to map wifi and wireless network to * hotspot then the partial text "wirele..." could suggest * "wifi router". Token normalization like stemmers, accent * removal, etc., would allow suggestions to ignore such * variations. * * <p> * When two matching suggestions have the same weight, they * are tie-broken by the analyzed form. If their analyzed * form is the same then the order is undefined. * * <p> * There are some limitations: * <ul> * * <li> A lookup from a query like "net" in English won't * be any different than "net " (ie, user added a * trailing space) because analyzers don't reflect * when they've seen a token separator and when they * haven't. * * <li> If you're using {@code StopFilter}, and the user will * type "fast apple", but so far all they've typed is * "fast a", again because the analyzer doesn't convey whether * it's seen a token separator after the "a", * {@code StopFilter} will remove that "a" causing * far more matches than you'd expect. * * <li> Lookups with the empty string return no results * instead of all results. * </ul> * * @lucene.experimental */ public class AnalyzingSuggester extends Lookup { /** * FST<Weight,Surface>: * input is the analyzed form, with a null byte between terms * weights are encoded as costs: (Integer.MAX_VALUE-weight) * surface is the original, unanalyzed form. */ private FST<Pair<Long,BytesRef>> fst = null; /** * Analyzer that will be used for analyzing suggestions at * index time. */ private final Analyzer indexAnalyzer; /** * Analyzer that will be used for analyzing suggestions at * query time. */ private final Analyzer queryAnalyzer; /** * True if exact match suggestions should always be returned first. */ private final boolean exactFirst; /** * True if separator between tokens should be preserved. */ private final boolean preserveSep; /** Include this flag in the options parameter to {@link * #AnalyzingSuggester(Analyzer,Analyzer,int,int,int,boolean)} to always * return the exact match first, regardless of score. This * has no performance impact but could result in * low-quality suggestions. */ public static final int EXACT_FIRST = 1; /** Include this flag in the options parameter to {@link * #AnalyzingSuggester(Analyzer,Analyzer,int,int,int,boolean)} to preserve * token separators when matching. */ public static final int PRESERVE_SEP = 2; /** Represents the separation between tokens, if * PRESERVE_SEP was specified */ private static final int SEP_LABEL = '\u001F'; /** Marks end of the analyzed input and start of dedup * byte. */ private static final int END_BYTE = 0x0; /** Maximum number of dup surface forms (different surface * forms for the same analyzed form). */ private final int maxSurfaceFormsPerAnalyzedForm; /** Maximum graph paths to index for a single analyzed * surface form. This only matters if your analyzer * makes lots of alternate paths (e.g. contains * SynonymFilter). */ private final int maxGraphExpansions; /** Highest number of analyzed paths we saw for any single * input surface form. For analyzers that never create * graphs this will always be 1. */ private int maxAnalyzedPathsForOneInput; private boolean hasPayloads; private static final int PAYLOAD_SEP = '\u001f'; /** Whether position holes should appear in the automaton. */ private boolean preservePositionIncrements; /** Number of entries the lookup was built with */ private long count = 0; /** * Calls {@link #AnalyzingSuggester(Analyzer,Analyzer,int,int,int,boolean) * AnalyzingSuggester(analyzer, analyzer, EXACT_FIRST | * PRESERVE_SEP, 256, -1, true)} */ public AnalyzingSuggester(Analyzer analyzer) { this(analyzer, analyzer, EXACT_FIRST | PRESERVE_SEP, 256, -1, true); } /** * Calls {@link #AnalyzingSuggester(Analyzer,Analyzer,int,int,int,boolean) * AnalyzingSuggester(indexAnalyzer, queryAnalyzer, EXACT_FIRST | * PRESERVE_SEP, 256, -1, true)} */ public AnalyzingSuggester(Analyzer indexAnalyzer, Analyzer queryAnalyzer) { this(indexAnalyzer, queryAnalyzer, EXACT_FIRST | PRESERVE_SEP, 256, -1, true); } /** * Creates a new suggester. * * @param indexAnalyzer Analyzer that will be used for * analyzing suggestions while building the index. * @param queryAnalyzer Analyzer that will be used for * analyzing query text during lookup * @param options see {@link #EXACT_FIRST}, {@link #PRESERVE_SEP} * @param maxSurfaceFormsPerAnalyzedForm Maximum number of * surface forms to keep for a single analyzed form. * When there are too many surface forms we discard the * lowest weighted ones. * @param maxGraphExpansions Maximum number of graph paths * to expand from the analyzed form. Set this to -1 for * no limit. * @param preservePositionIncrements Whether position holes * should appear in the automata */ public AnalyzingSuggester(Analyzer indexAnalyzer, Analyzer queryAnalyzer, int options, int maxSurfaceFormsPerAnalyzedForm, int maxGraphExpansions, boolean preservePositionIncrements) { this.indexAnalyzer = indexAnalyzer; this.queryAnalyzer = queryAnalyzer; if ((options & ~(EXACT_FIRST | PRESERVE_SEP)) != 0) { throw new IllegalArgumentException("options should only contain EXACT_FIRST and PRESERVE_SEP; got " + options); } this.exactFirst = (options & EXACT_FIRST) != 0; this.preserveSep = (options & PRESERVE_SEP) != 0; // NOTE: this is just an implementation limitation; if // somehow this is a problem we could fix it by using // more than one byte to disambiguate ... but 256 seems // like it should be way more then enough. if (maxSurfaceFormsPerAnalyzedForm <= 0 || maxSurfaceFormsPerAnalyzedForm > 256) { throw new IllegalArgumentException("maxSurfaceFormsPerAnalyzedForm must be > 0 and < 256 (got: " + maxSurfaceFormsPerAnalyzedForm + ")"); } this.maxSurfaceFormsPerAnalyzedForm = maxSurfaceFormsPerAnalyzedForm; if (maxGraphExpansions < 1 && maxGraphExpansions != -1) { throw new IllegalArgumentException("maxGraphExpansions must -1 (no limit) or > 0 (got: " + maxGraphExpansions + ")"); } this.maxGraphExpansions = maxGraphExpansions; this.preservePositionIncrements = preservePositionIncrements; } /** Returns byte size of the underlying FST. */ @Override public long sizeInBytes() { return fst == null ? 0 : fst.sizeInBytes(); } private void copyDestTransitions(State from, State to, List<Transition> transitions) { if (to.isAccept()) { from.setAccept(true); } for(Transition t : to.getTransitions()) { transitions.add(t); } } // Replaces SEP with epsilon or remaps them if // we were asked to preserve them: private void replaceSep(Automaton a) { State[] states = a.getNumberedStates(); // Go in reverse topo sort so we know we only have to // make one pass: for(int stateNumber=states.length-1;stateNumber >=0;stateNumber--) { final State state = states[stateNumber]; List<Transition> newTransitions = new ArrayList<>(); for(Transition t : state.getTransitions()) { assert t.getMin() == t.getMax(); if (t.getMin() == TokenStreamToAutomaton.POS_SEP) { if (preserveSep) { // Remap to SEP_LABEL: newTransitions.add(new Transition(SEP_LABEL, t.getDest())); } else { copyDestTransitions(state, t.getDest(), newTransitions); a.setDeterministic(false); } } else if (t.getMin() == TokenStreamToAutomaton.HOLE) { // Just remove the hole: there will then be two // SEP tokens next to each other, which will only // match another hole at search time. Note that // it will also match an empty-string token ... if // that's somehow a problem we can always map HOLE // to a dedicated byte (and escape it in the // input). copyDestTransitions(state, t.getDest(), newTransitions); a.setDeterministic(false); } else { newTransitions.add(t); } } state.setTransitions(newTransitions.toArray(new Transition[newTransitions.size()])); } } /** Used by subclass to change the lookup automaton, if * necessary. */ protected Automaton convertAutomaton(Automaton a) { return a; } TokenStreamToAutomaton getTokenStreamToAutomaton() { final TokenStreamToAutomaton tsta = new TokenStreamToAutomaton(); tsta.setPreservePositionIncrements(preservePositionIncrements); return tsta; } private static class AnalyzingComparator implements Comparator<BytesRef> { private final boolean hasPayloads; public AnalyzingComparator(boolean hasPayloads) { this.hasPayloads = hasPayloads; } private final ByteArrayDataInput readerA = new ByteArrayDataInput(); private final ByteArrayDataInput readerB = new ByteArrayDataInput(); private final BytesRef scratchA = new BytesRef(); private final BytesRef scratchB = new BytesRef(); @Override public int compare(BytesRef a, BytesRef b) { // First by analyzed form: readerA.reset(a.bytes, a.offset, a.length); scratchA.length = readerA.readShort(); scratchA.bytes = a.bytes; scratchA.offset = readerA.getPosition(); readerB.reset(b.bytes, b.offset, b.length); scratchB.bytes = b.bytes; scratchB.length = readerB.readShort(); scratchB.offset = readerB.getPosition(); int cmp = scratchA.compareTo(scratchB); if (cmp != 0) { return cmp; } readerA.skipBytes(scratchA.length); readerB.skipBytes(scratchB.length); // Next by cost: long aCost = readerA.readInt(); long bCost = readerB.readInt(); assert decodeWeight(aCost) >= 0; assert decodeWeight(bCost) >= 0; if (aCost < bCost) { return -1; } else if (aCost > bCost) { return 1; } // Finally by surface form: if (hasPayloads) { scratchA.length = readerA.readShort(); scratchB.length = readerB.readShort(); scratchA.offset = readerA.getPosition(); scratchB.offset = readerB.getPosition(); } else { scratchA.offset = readerA.getPosition(); scratchB.offset = readerB.getPosition(); scratchA.length = a.length - scratchA.offset; scratchB.length = b.length - scratchB.offset; } return scratchA.compareTo(scratchB); } } @Override public void build(InputIterator iterator) throws IOException { String prefix = getClass().getSimpleName(); File directory = OfflineSorter.defaultTempDir(); File tempInput = File.createTempFile(prefix, ".input", directory); File tempSorted = File.createTempFile(prefix, ".sorted", directory); hasPayloads = iterator.hasPayloads(); OfflineSorter.ByteSequencesWriter writer = new OfflineSorter.ByteSequencesWriter(tempInput); OfflineSorter.ByteSequencesReader reader = null; BytesRef scratch = new BytesRef(); TokenStreamToAutomaton ts2a = getTokenStreamToAutomaton(); boolean success = false; count = 0; byte buffer[] = new byte[8]; try { ByteArrayDataOutput output = new ByteArrayDataOutput(buffer); BytesRef surfaceForm; while ((surfaceForm = iterator.next()) != null) { Set<IntsRef> paths = toFiniteStrings(surfaceForm, ts2a); maxAnalyzedPathsForOneInput = Math.max(maxAnalyzedPathsForOneInput, paths.size()); for (IntsRef path : paths) { Util.toBytesRef(path, scratch); // length of the analyzed text (FST input) if (scratch.length > Short.MAX_VALUE-2) { throw new IllegalArgumentException("cannot handle analyzed forms > " + (Short.MAX_VALUE-2) + " in length (got " + scratch.length + ")"); } short analyzedLength = (short) scratch.length; // compute the required length: // analyzed sequence + weight (4) + surface + analyzedLength (short) int requiredLength = analyzedLength + 4 + surfaceForm.length + 2; BytesRef payload; if (hasPayloads) { if (surfaceForm.length > (Short.MAX_VALUE-2)) { throw new IllegalArgumentException("cannot handle surface form > " + (Short.MAX_VALUE-2) + " in length (got " + surfaceForm.length + ")"); } payload = iterator.payload(); // payload + surfaceLength (short) requiredLength += payload.length + 2; } else { payload = null; } buffer = ArrayUtil.grow(buffer, requiredLength); output.reset(buffer); output.writeShort(analyzedLength); output.writeBytes(scratch.bytes, scratch.offset, scratch.length); output.writeInt(encodeWeight(iterator.weight())); if (hasPayloads) { for(int i=0;i<surfaceForm.length;i++) { if (surfaceForm.bytes[i] == PAYLOAD_SEP) { throw new IllegalArgumentException("surface form cannot contain unit separator character U+001F; this character is reserved"); } } output.writeShort((short) surfaceForm.length); output.writeBytes(surfaceForm.bytes, surfaceForm.offset, surfaceForm.length); output.writeBytes(payload.bytes, payload.offset, payload.length); } else { output.writeBytes(surfaceForm.bytes, surfaceForm.offset, surfaceForm.length); } assert output.getPosition() == requiredLength: output.getPosition() + " vs " + requiredLength; writer.write(buffer, 0, output.getPosition()); } count++; } writer.close(); // Sort all input/output pairs (required by FST.Builder): new OfflineSorter(new AnalyzingComparator(hasPayloads)).sort(tempInput, tempSorted); // Free disk space: tempInput.delete(); reader = new OfflineSorter.ByteSequencesReader(tempSorted); PairOutputs<Long,BytesRef> outputs = new PairOutputs<>(PositiveIntOutputs.getSingleton(), ByteSequenceOutputs.getSingleton()); Builder<Pair<Long,BytesRef>> builder = new Builder<>(FST.INPUT_TYPE.BYTE1, outputs); // Build FST: BytesRef previousAnalyzed = null; BytesRef analyzed = new BytesRef(); BytesRef surface = new BytesRef(); IntsRef scratchInts = new IntsRef(); ByteArrayDataInput input = new ByteArrayDataInput(); // Used to remove duplicate surface forms (but we // still index the hightest-weight one). We clear // this when we see a new analyzed form, so it cannot // grow unbounded (at most 256 entries): Set<BytesRef> seenSurfaceForms = new HashSet<>(); int dedup = 0; while (reader.read(scratch)) { input.reset(scratch.bytes, scratch.offset, scratch.length); short analyzedLength = input.readShort(); analyzed.grow(analyzedLength+2); input.readBytes(analyzed.bytes, 0, analyzedLength); analyzed.length = analyzedLength; long cost = input.readInt(); surface.bytes = scratch.bytes; if (hasPayloads) { surface.length = input.readShort(); surface.offset = input.getPosition(); } else { surface.offset = input.getPosition(); surface.length = scratch.length - surface.offset; } if (previousAnalyzed == null) { previousAnalyzed = new BytesRef(); previousAnalyzed.copyBytes(analyzed); seenSurfaceForms.add(BytesRef.deepCopyOf(surface)); } else if (analyzed.equals(previousAnalyzed)) { dedup++; if (dedup >= maxSurfaceFormsPerAnalyzedForm) { // More than maxSurfaceFormsPerAnalyzedForm // dups: skip the rest: continue; } if (seenSurfaceForms.contains(surface)) { continue; } seenSurfaceForms.add(BytesRef.deepCopyOf(surface)); } else { dedup = 0; previousAnalyzed.copyBytes(analyzed); seenSurfaceForms.clear(); seenSurfaceForms.add(BytesRef.deepCopyOf(surface)); } // TODO: I think we can avoid the extra 2 bytes when // there is no dup (dedup==0), but we'd have to fix // the exactFirst logic ... which would be sort of // hairy because we'd need to special case the two // (dup/not dup)... // NOTE: must be byte 0 so we sort before whatever // is next analyzed.bytes[analyzed.offset+analyzed.length] = 0; analyzed.bytes[analyzed.offset+analyzed.length+1] = (byte) dedup; analyzed.length += 2; Util.toIntsRef(analyzed, scratchInts); //System.out.println("ADD: " + scratchInts + " -> " + cost + ": " + surface.utf8ToString()); if (!hasPayloads) { builder.add(scratchInts, outputs.newPair(cost, BytesRef.deepCopyOf(surface))); } else { int payloadOffset = input.getPosition() + surface.length; int payloadLength = scratch.length - payloadOffset; BytesRef br = new BytesRef(surface.length + 1 + payloadLength); System.arraycopy(surface.bytes, surface.offset, br.bytes, 0, surface.length); br.bytes[surface.length] = PAYLOAD_SEP; System.arraycopy(scratch.bytes, payloadOffset, br.bytes, surface.length+1, payloadLength); br.length = br.bytes.length; builder.add(scratchInts, outputs.newPair(cost, br)); } } fst = builder.finish(); //Util.dotToFile(fst, "/tmp/suggest.dot"); success = true; } finally { if (success) { IOUtils.close(reader, writer); } else { IOUtils.closeWhileHandlingException(reader, writer); } tempInput.delete(); tempSorted.delete(); } } @Override public boolean store(DataOutput output) throws IOException { output.writeVLong(count); if (fst == null) { return false; } fst.save(output); output.writeVInt(maxAnalyzedPathsForOneInput); output.writeByte((byte) (hasPayloads ? 1 : 0)); return true; } @Override public boolean load(DataInput input) throws IOException { count = input.readVLong(); this.fst = new FST<>(input, new PairOutputs<>(PositiveIntOutputs.getSingleton(), ByteSequenceOutputs.getSingleton())); maxAnalyzedPathsForOneInput = input.readVInt(); hasPayloads = input.readByte() == 1; return true; } private LookupResult getLookupResult(Long output1, BytesRef output2, CharsRef spare) { LookupResult result; if (hasPayloads) { int sepIndex = -1; for(int i=0;i<output2.length;i++) { if (output2.bytes[output2.offset+i] == PAYLOAD_SEP) { sepIndex = i; break; } } assert sepIndex != -1; spare.grow(sepIndex); final int payloadLen = output2.length - sepIndex - 1; UnicodeUtil.UTF8toUTF16(output2.bytes, output2.offset, sepIndex, spare); BytesRef payload = new BytesRef(payloadLen); System.arraycopy(output2.bytes, sepIndex+1, payload.bytes, 0, payloadLen); payload.length = payloadLen; result = new LookupResult(spare.toString(), decodeWeight(output1), payload); } else { spare.grow(output2.length); UnicodeUtil.UTF8toUTF16(output2, spare); result = new LookupResult(spare.toString(), decodeWeight(output1)); } return result; } private boolean sameSurfaceForm(BytesRef key, BytesRef output2) { if (hasPayloads) { // output2 has at least PAYLOAD_SEP byte: if (key.length >= output2.length) { return false; } for(int i=0;i<key.length;i++) { if (key.bytes[key.offset+i] != output2.bytes[output2.offset+i]) { return false; } } return output2.bytes[output2.offset + key.length] == PAYLOAD_SEP; } else { return key.bytesEquals(output2); } } @Override public List<LookupResult> lookup(final CharSequence key, boolean onlyMorePopular, int num) { assert num > 0; if (onlyMorePopular) { throw new IllegalArgumentException("this suggester only works with onlyMorePopular=false"); } if (fst == null) { return Collections.emptyList(); } //System.out.println("lookup key=" + key + " num=" + num); for (int i = 0; i < key.length(); i++) { if (key.charAt(i) == 0x1E) { throw new IllegalArgumentException("lookup key cannot contain HOLE character U+001E; this character is reserved"); } if (key.charAt(i) == 0x1F) { throw new IllegalArgumentException("lookup key cannot contain unit separator character U+001F; this character is reserved"); } } final BytesRef utf8Key = new BytesRef(key); try { Automaton lookupAutomaton = toLookupAutomaton(key); final CharsRef spare = new CharsRef(); //System.out.println(" now intersect exactFirst=" + exactFirst); // Intersect automaton w/ suggest wFST and get all // prefix starting nodes & their outputs: //final PathIntersector intersector = getPathIntersector(lookupAutomaton, fst); //System.out.println(" prefixPaths: " + prefixPaths.size()); BytesReader bytesReader = fst.getBytesReader(); FST.Arc<Pair<Long,BytesRef>> scratchArc = new FST.Arc<>(); final List<LookupResult> results = new ArrayList<>(); List<FSTUtil.Path<Pair<Long,BytesRef>>> prefixPaths = FSTUtil.intersectPrefixPaths(convertAutomaton(lookupAutomaton), fst); if (exactFirst) { int count = 0; for (FSTUtil.Path<Pair<Long,BytesRef>> path : prefixPaths) { if (fst.findTargetArc(END_BYTE, path.fstNode, scratchArc, bytesReader) != null) { // This node has END_BYTE arc leaving, meaning it's an // "exact" match: count++; } } // Searcher just to find the single exact only // match, if present: Util.TopNSearcher<Pair<Long,BytesRef>> searcher; searcher = new Util.TopNSearcher<>(fst, count * maxSurfaceFormsPerAnalyzedForm, count * maxSurfaceFormsPerAnalyzedForm, weightComparator); // NOTE: we could almost get away with only using // the first start node. The only catch is if // maxSurfaceFormsPerAnalyzedForm had kicked in and // pruned our exact match from one of these nodes // ...: for (FSTUtil.Path<Pair<Long,BytesRef>> path : prefixPaths) { if (fst.findTargetArc(END_BYTE, path.fstNode, scratchArc, bytesReader) != null) { // This node has END_BYTE arc leaving, meaning it's an // "exact" match: searcher.addStartPaths(scratchArc, fst.outputs.add(path.output, scratchArc.output), false, path.input); } } TopResults<Pair<Long,BytesRef>> completions = searcher.search(); assert completions.isComplete; // NOTE: this is rather inefficient: we enumerate // every matching "exactly the same analyzed form" // path, and then do linear scan to see if one of // these exactly matches the input. It should be // possible (though hairy) to do something similar // to getByOutput, since the surface form is encoded // into the FST output, so we more efficiently hone // in on the exact surface-form match. Still, I // suspect very little time is spent in this linear // seach: it's bounded by how many prefix start // nodes we have and the // maxSurfaceFormsPerAnalyzedForm: for(Result<Pair<Long,BytesRef>> completion : completions) { BytesRef output2 = completion.output.output2; if (sameSurfaceForm(utf8Key, output2)) { results.add(getLookupResult(completion.output.output1, output2, spare)); break; } } if (results.size() == num) { // That was quick: return results; } } Util.TopNSearcher<Pair<Long,BytesRef>> searcher; searcher = new Util.TopNSearcher<Pair<Long,BytesRef>>(fst, num - results.size(), num * maxAnalyzedPathsForOneInput, weightComparator) { private final Set<BytesRef> seen = new HashSet<>(); @Override protected boolean acceptResult(IntsRef input, Pair<Long,BytesRef> output) { // Dedup: when the input analyzes to a graph we // can get duplicate surface forms: if (seen.contains(output.output2)) { return false; } seen.add(output.output2); if (!exactFirst) { return true; } else { // In exactFirst mode, don't accept any paths // matching the surface form since that will // create duplicate results: if (sameSurfaceForm(utf8Key, output.output2)) { // We found exact match, which means we should // have already found it in the first search: assert results.size() == 1; return false; } else { return true; } } } }; prefixPaths = getFullPrefixPaths(prefixPaths, lookupAutomaton, fst); for (FSTUtil.Path<Pair<Long,BytesRef>> path : prefixPaths) { searcher.addStartPaths(path.fstNode, path.output, true, path.input); } TopResults<Pair<Long,BytesRef>> completions = searcher.search(); assert completions.isComplete; for(Result<Pair<Long,BytesRef>> completion : completions) { LookupResult result = getLookupResult(completion.output.output1, completion.output.output2, spare); // TODO: for fuzzy case would be nice to return // how many edits were required //System.out.println(" result=" + result); results.add(result); if (results.size() == num) { // In the exactFirst=true case the search may // produce one extra path break; } } return results; } catch (IOException bogus) { throw new RuntimeException(bogus); } } @Override public long getCount() { return count; } /** Returns all prefix paths to initialize the search. */ protected List<FSTUtil.Path<Pair<Long,BytesRef>>> getFullPrefixPaths(List<FSTUtil.Path<Pair<Long,BytesRef>>> prefixPaths, Automaton lookupAutomaton, FST<Pair<Long,BytesRef>> fst) throws IOException { return prefixPaths; } final Set<IntsRef> toFiniteStrings(final BytesRef surfaceForm, final TokenStreamToAutomaton ts2a) throws IOException { // Analyze surface form: Automaton automaton = null; try (TokenStream ts = indexAnalyzer.tokenStream("", surfaceForm.utf8ToString())) { // Create corresponding automaton: labels are bytes // from each analyzed token, with byte 0 used as // separator between tokens: automaton = ts2a.toAutomaton(ts); } replaceSep(automaton); automaton = convertAutomaton(automaton); assert SpecialOperations.isFinite(automaton); // Get all paths from the automaton (there can be // more than one path, eg if the analyzer created a // graph using SynFilter or WDF): // TODO: we could walk & add simultaneously, so we // don't have to alloc [possibly biggish] // intermediate HashSet in RAM: return SpecialOperations.getFiniteStrings(automaton, maxGraphExpansions); } final Automaton toLookupAutomaton(final CharSequence key) throws IOException { // TODO: is there a Reader from a CharSequence? // Turn tokenstream into automaton: Automaton automaton = null; try (TokenStream ts = queryAnalyzer.tokenStream("", key.toString())) { automaton = (getTokenStreamToAutomaton()).toAutomaton(ts); } // TODO: we could use the end offset to "guess" // whether the final token was a partial token; this // would only be a heuristic ... but maybe an OK one. // This way we could eg differentiate "net" from "net ", // which we can't today... replaceSep(automaton); // TODO: we can optimize this somewhat by determinizing // while we convert BasicOperations.determinize(automaton); return automaton; } /** * Returns the weight associated with an input string, * or null if it does not exist. */ public Object get(CharSequence key) { throw new UnsupportedOperationException(); } /** cost -> weight */ private static int decodeWeight(long encoded) { return (int)(Integer.MAX_VALUE - encoded); } /** weight -> cost */ private static int encodeWeight(long value) { if (value < 0 || value > Integer.MAX_VALUE) { throw new UnsupportedOperationException("cannot encode value: " + value); } return Integer.MAX_VALUE - (int)value; } static final Comparator<Pair<Long,BytesRef>> weightComparator = new Comparator<Pair<Long,BytesRef>> () { @Override public int compare(Pair<Long,BytesRef> left, Pair<Long,BytesRef> right) { return left.output1.compareTo(right.output1); } }; }