package org.apache.lucene.spatial.prefix; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import com.carrotsearch.randomizedtesting.annotations.Repeat; import com.spatial4j.core.context.SpatialContextFactory; import com.spatial4j.core.shape.Rectangle; import com.spatial4j.core.shape.Shape; import com.spatial4j.core.shape.ShapeCollection; import com.spatial4j.core.shape.SpatialRelation; import com.spatial4j.core.shape.impl.RectangleImpl; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.StoredField; import org.apache.lucene.document.StringField; import org.apache.lucene.search.Query; import org.apache.lucene.spatial.StrategyTestCase; import org.apache.lucene.spatial.prefix.tree.Cell; import org.apache.lucene.spatial.prefix.tree.QuadPrefixTree; import org.apache.lucene.spatial.prefix.tree.SpatialPrefixTree; import org.apache.lucene.spatial.query.SpatialArgs; import org.apache.lucene.spatial.query.SpatialOperation; import org.junit.Before; import org.junit.Test; import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.LinkedHashSet; import java.util.List; import java.util.Map; import java.util.Set; import static com.carrotsearch.randomizedtesting.RandomizedTest.randomInt; import static com.carrotsearch.randomizedtesting.RandomizedTest.randomIntBetween; import static com.spatial4j.core.shape.SpatialRelation.CONTAINS; import static com.spatial4j.core.shape.SpatialRelation.DISJOINT; import static com.spatial4j.core.shape.SpatialRelation.INTERSECTS; import static com.spatial4j.core.shape.SpatialRelation.WITHIN; public class SpatialOpRecursivePrefixTreeTest extends StrategyTestCase { static final int ITERATIONS = 10;//Test Iterations private SpatialPrefixTree grid; @Before public void setUp() throws Exception { super.setUp(); deleteAll(); } public void mySetup(int maxLevels) throws IOException { //non-geospatial makes this test a little easier (in gridSnap), and using boundary values 2^X raises // the prospect of edge conditions we want to test, plus makes for simpler numbers (no decimals). SpatialContextFactory factory = new SpatialContextFactory(); factory.geo = false; factory.worldBounds = new RectangleImpl(0, 256, -128, 128, null); this.ctx = factory.newSpatialContext(); //A fairly shallow grid, and default 2.5% distErrPct if (maxLevels == -1) maxLevels = randomIntBetween(1, 8); this.grid = new QuadPrefixTree(ctx, maxLevels); this.strategy = new RecursivePrefixTreeStrategy(grid, getClass().getSimpleName()); //((PrefixTreeStrategy) strategy).setDistErrPct(0);//fully precise to grid System.out.println("Strategy: " + strategy.toString()); } @Test @Repeat(iterations = ITERATIONS) public void testIntersects() throws IOException { mySetup(-1); doTest(SpatialOperation.Intersects); } @Test @Repeat(iterations = ITERATIONS) public void testWithin() throws IOException { mySetup(-1); doTest(SpatialOperation.IsWithin); } @Test @Repeat(iterations = ITERATIONS) public void testContains() throws IOException { mySetup(-1); doTest(SpatialOperation.Contains); } @Test @Repeat(iterations = ITERATIONS) public void testDisjoint() throws IOException { mySetup(-1); doTest(SpatialOperation.IsDisjointTo); } /** See LUCENE-5062, {@link ContainsPrefixTreeFilter#multiOverlappingIndexedShapes}. */ @Test public void testContainsPairOverlap() throws IOException { mySetup(3); adoc("0", new ShapePair(ctx.makeRectangle(0, 33, -128, 128), ctx.makeRectangle(33, 128, -128, 128), true)); commit(); Query query = strategy.makeQuery(new SpatialArgs(SpatialOperation.Contains, ctx.makeRectangle(0, 128, -16, 128))); SearchResults searchResults = executeQuery(query, 1); assertEquals(1, searchResults.numFound); } @Test public void testWithinDisjointParts() throws IOException { mySetup(7); //one shape comprised of two parts, quite separated apart adoc("0", new ShapePair(ctx.makeRectangle(0, 10, -120, -100), ctx.makeRectangle(220, 240, 110, 125), false)); commit(); //query surrounds only the second part of the indexed shape Query query = strategy.makeQuery(new SpatialArgs(SpatialOperation.IsWithin, ctx.makeRectangle(210, 245, 105, 128))); SearchResults searchResults = executeQuery(query, 1); //we shouldn't find it because it's not completely within assertTrue(searchResults.numFound == 0); } @Test /** LUCENE-4916 */ public void testWithinLeafApproxRule() throws IOException { mySetup(2);//4x4 grid //indexed shape will simplify to entire right half (2 top cells) adoc("0", ctx.makeRectangle(192, 204, -128, 128)); commit(); ((RecursivePrefixTreeStrategy) strategy).setPrefixGridScanLevel(randomInt(2)); //query does NOT contain it; both indexed cells are leaves to the query, and // when expanded to the full grid cells, the top one's top row is disjoint // from the query and thus not a match. assertTrue(executeQuery(strategy.makeQuery( new SpatialArgs(SpatialOperation.IsWithin, ctx.makeRectangle(38, 192, -72, 56)) ), 1).numFound==0);//no-match //this time the rect is a little bigger and is considered a match. It's a // an acceptable false-positive because of the grid approximation. assertTrue(executeQuery(strategy.makeQuery( new SpatialArgs(SpatialOperation.IsWithin, ctx.makeRectangle(38, 192, -72, 80)) ), 1).numFound==1);//match } //Override so we can index parts of a pair separately, resulting in the detailLevel // being independent for each shape vs the whole thing @Override protected Document newDoc(String id, Shape shape) { Document doc = new Document(); doc.add(new StringField("id", id, Field.Store.YES)); if (shape != null) { Collection<Shape> shapes; if (shape instanceof ShapePair) { shapes = new ArrayList<>(2); shapes.add(((ShapePair)shape).shape1); shapes.add(((ShapePair)shape).shape2); } else { shapes = Collections.singleton(shape); } for (Shape shapei : shapes) { for (Field f : strategy.createIndexableFields(shapei)) { doc.add(f); } } if (storeShape)//just for diagnostics doc.add(new StoredField(strategy.getFieldName(), shape.toString())); } return doc; } private void doTest(final SpatialOperation operation) throws IOException { //first show that when there's no data, a query will result in no results { Query query = strategy.makeQuery(new SpatialArgs(operation, randomRectangle())); SearchResults searchResults = executeQuery(query, 1); assertEquals(0, searchResults.numFound); } final boolean biasContains = (operation == SpatialOperation.Contains); Map<String, Shape> indexedShapes = new LinkedHashMap<>(); Map<String, Shape> indexedShapesGS = new LinkedHashMap<>();//grid snapped final int numIndexedShapes = randomIntBetween(1, 6); for (int i = 0; i < numIndexedShapes; i++) { String id = "" + i; Shape indexedShape; Shape indexedShapeGS; //(grid-snapped) int R = random().nextInt(12); if (R == 0) {//1 in 12 indexedShape = null; //no shape for this doc indexedShapeGS = null; } else if (R % 3 == 0) {//4 in 12 (0,3,6,9) //comprised of more than one shape Rectangle shape1 = randomRectangle(); Rectangle shape2 = randomRectangle(); indexedShape = new ShapePair(shape1, shape2, biasContains); indexedShapeGS = new ShapePair(gridSnap(shape1), gridSnap(shape2), biasContains); } else { //just one shape indexedShape = randomRectangle(); indexedShapeGS = gridSnap(indexedShape); } //TODO sometimes index a point. Need to fix LUCENE-4978 first though. indexedShapes.put(id, indexedShape); indexedShapesGS.put(id, indexedShapeGS); adoc(id, indexedShape); if (random().nextInt(10) == 0) commit();//intermediate commit, produces extra segments } //delete some documents randomly Iterator<String> idIter = indexedShapes.keySet().iterator(); while (idIter.hasNext()) { String id = idIter.next(); if (random().nextInt(10) == 0) { deleteDoc(id); idIter.remove(); indexedShapesGS.remove(id); } } commit(); final int numQueryShapes = atLeast(20); for (int i = 0; i < numQueryShapes; i++) { int scanLevel = randomInt(grid.getMaxLevels()); ((RecursivePrefixTreeStrategy) strategy).setPrefixGridScanLevel(scanLevel); final Shape queryShape = randomRectangle(); final boolean opIsDisjoint = operation == SpatialOperation.IsDisjointTo; //Generate truth via brute force: // We ensure true-positive matches (if the predicate on the raw shapes match // then the search should find those same matches). // approximations, false-positive matches Set<String> expectedIds = new LinkedHashSet<>();//true-positives Set<String> secondaryIds = new LinkedHashSet<>();//false-positives (unless disjoint) for (Map.Entry<String, Shape> entry : indexedShapes.entrySet()) { String id = entry.getKey(); Shape indexedShapeCompare = entry.getValue(); if (indexedShapeCompare == null) continue; Shape queryShapeCompare = queryShape; if (operation.evaluate(indexedShapeCompare, queryShapeCompare)) { expectedIds.add(id); if (opIsDisjoint) { //if no longer intersect after buffering them, for disjoint, remember this indexedShapeCompare = indexedShapesGS.get(id); queryShapeCompare = gridSnap(queryShape); if (!operation.evaluate(indexedShapeCompare, queryShapeCompare)) secondaryIds.add(id); } } else if (!opIsDisjoint) { //buffer either the indexed or query shape (via gridSnap) and try again if (operation == SpatialOperation.Intersects) { indexedShapeCompare = indexedShapesGS.get(id); queryShapeCompare = gridSnap(queryShape); //TODO Unfortunately, grid-snapping both can result in intersections that otherwise // wouldn't happen when the grids are adjacent. Not a big deal but our test is just a // bit more lenient. } else if (operation == SpatialOperation.Contains) { indexedShapeCompare = indexedShapesGS.get(id); } else if (operation == SpatialOperation.IsWithin) { queryShapeCompare = gridSnap(queryShape); } if (operation.evaluate(indexedShapeCompare, queryShapeCompare)) secondaryIds.add(id); } } //Search and verify results SpatialArgs args = new SpatialArgs(operation, queryShape); Query query = strategy.makeQuery(args); SearchResults got = executeQuery(query, 100); Set<String> remainingExpectedIds = new LinkedHashSet<>(expectedIds); for (SearchResult result : got.results) { String id = result.getId(); boolean removed = remainingExpectedIds.remove(id); if (!removed && (!opIsDisjoint && !secondaryIds.contains(id))) { fail("Shouldn't match", id, indexedShapes, indexedShapesGS, queryShape); } } if (opIsDisjoint) remainingExpectedIds.removeAll(secondaryIds); if (!remainingExpectedIds.isEmpty()) { String id = remainingExpectedIds.iterator().next(); fail("Should have matched", id, indexedShapes, indexedShapesGS, queryShape); } } } private void fail(String label, String id, Map<String, Shape> indexedShapes, Map<String, Shape> indexedShapesGS, Shape queryShape) { System.err.println("Ig:" + indexedShapesGS.get(id) + " Qg:" + gridSnap(queryShape)); fail(label + " I #" + id + ":" + indexedShapes.get(id) + " Q:" + queryShape); } // private Rectangle inset(Rectangle r) { // //typically inset by 1 (whole numbers are easy to read) // double d = Math.min(1.0, grid.getDistanceForLevel(grid.getMaxLevels()) / 4); // return ctx.makeRectangle(r.getMinX() + d, r.getMaxX() - d, r.getMinY() + d, r.getMaxY() - d); // } protected Rectangle gridSnap(Shape snapMe) { //The next 4 lines mimic PrefixTreeStrategy.createIndexableFields() double distErrPct = ((PrefixTreeStrategy) strategy).getDistErrPct(); double distErr = SpatialArgs.calcDistanceFromErrPct(snapMe, distErrPct, ctx); int detailLevel = grid.getLevelForDistance(distErr); List<Cell> cells = grid.getCells(snapMe, detailLevel, false, true); //calc bounding box of cells. List<Shape> cellShapes = new ArrayList<>(cells.size()); for (Cell cell : cells) { cellShapes.add(cell.getShape()); } return new ShapeCollection<>(cellShapes, ctx).getBoundingBox(); } /** * An aggregate of 2 shapes. Unfortunately we can't simply use a ShapeCollection because: * (a) ambiguity between CONTAINS & WITHIN for equal shapes, and * (b) adjacent pairs could as a whole contain the input shape. * The tests here are sensitive to these matters, although in practice ShapeCollection * is fine. */ private class ShapePair extends ShapeCollection<Rectangle> { final Rectangle shape1, shape2; final boolean biasContainsThenWithin;//a hack public ShapePair(Rectangle shape1, Rectangle shape2, boolean containsThenWithin) { super(Arrays.asList(shape1, shape2), ctx); this.shape1 = shape1; this.shape2 = shape2; biasContainsThenWithin = containsThenWithin; } @Override public SpatialRelation relate(Shape other) { SpatialRelation r = relateApprox(other); if (r == CONTAINS) return r; if (r == DISJOINT) return r; if (r == WITHIN && !biasContainsThenWithin) return r; //See if the correct answer is actually Contains, when the indexed shapes are adjacent, // creating a larger shape that contains the input shape. boolean pairTouches = shape1.relate(shape2).intersects(); if (!pairTouches) return r; //test all 4 corners Rectangle oRect = (Rectangle)other; if (relate(ctx.makePoint(oRect.getMinX(), oRect.getMinY())) == CONTAINS && relate(ctx.makePoint(oRect.getMinX(), oRect.getMaxY())) == CONTAINS && relate(ctx.makePoint(oRect.getMaxX(), oRect.getMinY())) == CONTAINS && relate(ctx.makePoint(oRect.getMaxX(), oRect.getMaxY())) == CONTAINS) return CONTAINS; return r; } private SpatialRelation relateApprox(Shape other) { if (biasContainsThenWithin) { if (shape1.relate(other) == CONTAINS || shape1.equals(other) || shape2.relate(other) == CONTAINS || shape2.equals(other)) return CONTAINS; if (shape1.relate(other) == WITHIN && shape2.relate(other) == WITHIN) return WITHIN; } else { if ((shape1.relate(other) == WITHIN || shape1.equals(other)) && (shape2.relate(other) == WITHIN || shape2.equals(other))) return WITHIN; if (shape1.relate(other) == CONTAINS || shape2.relate(other) == CONTAINS) return CONTAINS; } if (shape1.relate(other).intersects() || shape2.relate(other).intersects()) return INTERSECTS;//might actually be 'CONTAINS' if the pair are adjacent but we handle that later return DISJOINT; } @Override public String toString() { return "ShapePair(" + shape1 + " , " + shape2 + ")"; } } }