package org.apache.lucene.index; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.io.IOException; import org.apache.lucene.util.BytesRef; import org.apache.lucene.util.IntsRef; import org.apache.lucene.util.StringHelper; import org.apache.lucene.util.automaton.ByteRunAutomaton; import org.apache.lucene.util.automaton.CompiledAutomaton; import org.apache.lucene.util.automaton.Transition; /** * A FilteredTermsEnum that enumerates terms based upon what is accepted by a * DFA. * <p> * The algorithm is such: * <ol> * <li>As long as matches are successful, keep reading sequentially. * <li>When a match fails, skip to the next string in lexicographic order that * does not enter a reject state. * </ol> * <p> * The algorithm does not attempt to actually skip to the next string that is * completely accepted. This is not possible when the language accepted by the * FSM is not finite (i.e. * operator). * </p> * @lucene.experimental */ class AutomatonTermsEnum extends FilteredTermsEnum { // a tableized array-based form of the DFA private final ByteRunAutomaton runAutomaton; // common suffix of the automaton private final BytesRef commonSuffixRef; // true if the automaton accepts a finite language private final boolean finite; // array of sorted transitions for each state, indexed by state number private final Transition[][] allTransitions; // for path tracking: each long records gen when we last // visited the state; we use gens to avoid having to clear private final long[] visited; private long curGen; // the reference used for seeking forwards through the term dictionary private final BytesRef seekBytesRef = new BytesRef(10); // true if we are enumerating an infinite portion of the DFA. // in this case it is faster to drive the query based on the terms dictionary. // when this is true, linearUpperBound indicate the end of range // of terms where we should simply do sequential reads instead. private boolean linear = false; private final BytesRef linearUpperBound = new BytesRef(10); /** * Construct an enumerator based upon an automaton, enumerating the specified * field, working on a supplied TermsEnum * <p> * @lucene.experimental * <p> * @param compiled CompiledAutomaton */ public AutomatonTermsEnum(TermsEnum tenum, CompiledAutomaton compiled) { super(tenum); this.finite = compiled.finite; this.runAutomaton = compiled.runAutomaton; assert this.runAutomaton != null; this.commonSuffixRef = compiled.commonSuffixRef; this.allTransitions = compiled.sortedTransitions; // used for path tracking, where each bit is a numbered state. visited = new long[runAutomaton.getSize()]; } /** * Returns true if the term matches the automaton. Also stashes away the term * to assist with smart enumeration. */ @Override protected AcceptStatus accept(final BytesRef term) { if (commonSuffixRef == null || StringHelper.endsWith(term, commonSuffixRef)) { if (runAutomaton.run(term.bytes, term.offset, term.length)) return linear ? AcceptStatus.YES : AcceptStatus.YES_AND_SEEK; else return (linear && term.compareTo(linearUpperBound) < 0) ? AcceptStatus.NO : AcceptStatus.NO_AND_SEEK; } else { return (linear && term.compareTo(linearUpperBound) < 0) ? AcceptStatus.NO : AcceptStatus.NO_AND_SEEK; } } @Override protected BytesRef nextSeekTerm(final BytesRef term) throws IOException { //System.out.println("ATE.nextSeekTerm term=" + term); if (term == null) { assert seekBytesRef.length == 0; // return the empty term, as its valid if (runAutomaton.isAccept(runAutomaton.getInitialState())) { return seekBytesRef; } } else { seekBytesRef.copyBytes(term); } // seek to the next possible string; if (nextString()) { return seekBytesRef; // reposition } else { return null; // no more possible strings can match } } /** * Sets the enum to operate in linear fashion, as we have found * a looping transition at position: we set an upper bound and * act like a TermRangeQuery for this portion of the term space. */ private void setLinear(int position) { assert linear == false; int state = runAutomaton.getInitialState(); int maxInterval = 0xff; for (int i = 0; i < position; i++) { state = runAutomaton.step(state, seekBytesRef.bytes[i] & 0xff); assert state >= 0: "state=" + state; } for (int i = 0; i < allTransitions[state].length; i++) { Transition t = allTransitions[state][i]; if (t.getMin() <= (seekBytesRef.bytes[position] & 0xff) && (seekBytesRef.bytes[position] & 0xff) <= t.getMax()) { maxInterval = t.getMax(); break; } } // 0xff terms don't get the optimization... not worth the trouble. if (maxInterval != 0xff) maxInterval++; int length = position + 1; /* position + maxTransition */ if (linearUpperBound.bytes.length < length) linearUpperBound.bytes = new byte[length]; System.arraycopy(seekBytesRef.bytes, 0, linearUpperBound.bytes, 0, position); linearUpperBound.bytes[position] = (byte) maxInterval; linearUpperBound.length = length; linear = true; } private final IntsRef savedStates = new IntsRef(10); /** * Increments the byte buffer to the next String in binary order after s that will not put * the machine into a reject state. If such a string does not exist, returns * false. * * The correctness of this method depends upon the automaton being deterministic, * and having no transitions to dead states. * * @return true if more possible solutions exist for the DFA */ private boolean nextString() { int state; int pos = 0; savedStates.grow(seekBytesRef.length+1); final int[] states = savedStates.ints; states[0] = runAutomaton.getInitialState(); while (true) { curGen++; linear = false; // walk the automaton until a character is rejected. for (state = states[pos]; pos < seekBytesRef.length; pos++) { visited[state] = curGen; int nextState = runAutomaton.step(state, seekBytesRef.bytes[pos] & 0xff); if (nextState == -1) break; states[pos+1] = nextState; // we found a loop, record it for faster enumeration if (!finite && !linear && visited[nextState] == curGen) { setLinear(pos); } state = nextState; } // take the useful portion, and the last non-reject state, and attempt to // append characters that will match. if (nextString(state, pos)) { return true; } else { /* no more solutions exist from this useful portion, backtrack */ if ((pos = backtrack(pos)) < 0) /* no more solutions at all */ return false; final int newState = runAutomaton.step(states[pos], seekBytesRef.bytes[pos] & 0xff); if (newState >= 0 && runAutomaton.isAccept(newState)) /* String is good to go as-is */ return true; /* else advance further */ // TODO: paranoia? if we backtrack thru an infinite DFA, the loop detection is important! // for now, restart from scratch for all infinite DFAs if (!finite) pos = 0; } } } /** * Returns the next String in lexicographic order that will not put * the machine into a reject state. * * This method traverses the DFA from the given position in the String, * starting at the given state. * * If this cannot satisfy the machine, returns false. This method will * walk the minimal path, in lexicographic order, as long as possible. * * If this method returns false, then there might still be more solutions, * it is necessary to backtrack to find out. * * @param state current non-reject state * @param position useful portion of the string * @return true if more possible solutions exist for the DFA from this * position */ private boolean nextString(int state, int position) { /* * the next lexicographic character must be greater than the existing * character, if it exists. */ int c = 0; if (position < seekBytesRef.length) { c = seekBytesRef.bytes[position] & 0xff; // if the next byte is 0xff and is not part of the useful portion, // then by definition it puts us in a reject state, and therefore this // path is dead. there cannot be any higher transitions. backtrack. if (c++ == 0xff) return false; } seekBytesRef.length = position; visited[state] = curGen; Transition transitions[] = allTransitions[state]; // find the minimal path (lexicographic order) that is >= c for (int i = 0; i < transitions.length; i++) { Transition transition = transitions[i]; if (transition.getMax() >= c) { int nextChar = Math.max(c, transition.getMin()); // append either the next sequential char, or the minimum transition seekBytesRef.grow(seekBytesRef.length + 1); seekBytesRef.length++; seekBytesRef.bytes[seekBytesRef.length - 1] = (byte) nextChar; state = transition.getDest().getNumber(); /* * as long as is possible, continue down the minimal path in * lexicographic order. if a loop or accept state is encountered, stop. */ while (visited[state] != curGen && !runAutomaton.isAccept(state)) { visited[state] = curGen; /* * Note: we work with a DFA with no transitions to dead states. * so the below is ok, if it is not an accept state, * then there MUST be at least one transition. */ transition = allTransitions[state][0]; state = transition.getDest().getNumber(); // append the minimum transition seekBytesRef.grow(seekBytesRef.length + 1); seekBytesRef.length++; seekBytesRef.bytes[seekBytesRef.length - 1] = (byte) transition.getMin(); // we found a loop, record it for faster enumeration if (!finite && !linear && visited[state] == curGen) { setLinear(seekBytesRef.length-1); } } return true; } } return false; } /** * Attempts to backtrack thru the string after encountering a dead end * at some given position. Returns false if no more possible strings * can match. * * @param position current position in the input String * @return position >=0 if more possible solutions exist for the DFA */ private int backtrack(int position) { while (position-- > 0) { int nextChar = seekBytesRef.bytes[position] & 0xff; // if a character is 0xff its a dead-end too, // because there is no higher character in binary sort order. if (nextChar++ != 0xff) { seekBytesRef.bytes[position] = (byte) nextChar; seekBytesRef.length = position+1; return position; } } return -1; /* all solutions exhausted */ } }