/* * Copyright (c) 1997, 2006, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.security.provider; import java.math.BigInteger; import java.security.AlgorithmParameterGeneratorSpi; import java.security.AlgorithmParameters; import java.security.InvalidAlgorithmParameterException; import java.security.NoSuchAlgorithmException; import java.security.NoSuchProviderException; import java.security.InvalidParameterException; import java.security.SecureRandom; import java.security.spec.AlgorithmParameterSpec; import java.security.spec.InvalidParameterSpecException; import java.security.spec.DSAParameterSpec; /** * This class generates parameters for the DSA algorithm. It uses a default * prime modulus size of 1024 bits, which can be overwritten during * initialization. * * @author Jan Luehe * * * @see java.security.AlgorithmParameters * @see java.security.spec.AlgorithmParameterSpec * @see DSAParameters * * @since 1.2 */ public class DSAParameterGenerator extends AlgorithmParameterGeneratorSpi { // the modulus length private int modLen = 1024; // default // the source of randomness private SecureRandom random; // useful constants private static final BigInteger ZERO = BigInteger.valueOf(0); private static final BigInteger ONE = BigInteger.valueOf(1); private static final BigInteger TWO = BigInteger.valueOf(2); // Make a SHA-1 hash function private SHA sha; public DSAParameterGenerator() { this.sha = new SHA(); } /** * Initializes this parameter generator for a certain strength * and source of randomness. * * @param strength the strength (size of prime) in bits * @param random the source of randomness */ protected void engineInit(int strength, SecureRandom random) { /* * Bruce Schneier, "Applied Cryptography", 2nd Edition, * Description of DSA: * [...] The algorithm uses the following parameter: * p=a prime number L bits long, when L ranges from 512 to 1024 and is * a multiple of 64. [...] */ if ((strength < 512) || (strength > 1024) || (strength % 64 != 0)) { throw new InvalidParameterException ("Prime size must range from 512 to 1024 " + "and be a multiple of 64"); } this.modLen = strength; this.random = random; } /** * Initializes this parameter generator with a set of * algorithm-specific parameter generation values. * * @param params the set of algorithm-specific parameter generation values * @param random the source of randomness * * @exception InvalidAlgorithmParameterException if the given parameter * generation values are inappropriate for this parameter generator */ protected void engineInit(AlgorithmParameterSpec genParamSpec, SecureRandom random) throws InvalidAlgorithmParameterException { throw new InvalidAlgorithmParameterException("Invalid parameter"); } /** * Generates the parameters. * * @return the new AlgorithmParameters object */ protected AlgorithmParameters engineGenerateParameters() { AlgorithmParameters algParams = null; try { if (this.random == null) { this.random = new SecureRandom(); } BigInteger[] pAndQ = generatePandQ(this.random, this.modLen); BigInteger paramP = pAndQ[0]; BigInteger paramQ = pAndQ[1]; BigInteger paramG = generateG(paramP, paramQ); DSAParameterSpec dsaParamSpec = new DSAParameterSpec(paramP, paramQ, paramG); algParams = AlgorithmParameters.getInstance("DSA", "SUN"); algParams.init(dsaParamSpec); } catch (InvalidParameterSpecException e) { // this should never happen throw new RuntimeException(e.getMessage()); } catch (NoSuchAlgorithmException e) { // this should never happen, because we provide it throw new RuntimeException(e.getMessage()); } catch (NoSuchProviderException e) { // this should never happen, because we provide it throw new RuntimeException(e.getMessage()); } return algParams; } /* * Generates the prime and subprime parameters for DSA, * using the provided source of randomness. * This method will generate new seeds until a suitable * seed has been found. * * @param random the source of randomness to generate the * seed * @param L the size of <code>p</code>, in bits. * * @return an array of BigInteger, with <code>p</code> at index 0 and * <code>q</code> at index 1. */ BigInteger[] generatePandQ(SecureRandom random, int L) { BigInteger[] result = null; byte[] seed = new byte[20]; while(result == null) { for (int i = 0; i < 20; i++) { seed[i] = (byte)random.nextInt(); } result = generatePandQ(seed, L); } return result; } /* * Generates the prime and subprime parameters for DSA. * * <p>The seed parameter corresponds to the <code>SEED</code> parameter * referenced in the FIPS specification of the DSA algorithm, * and L is the size of <code>p</code>, in bits. * * @param seed the seed to generate the parameters * @param L the size of <code>p</code>, in bits. * * @return an array of BigInteger, with <code>p</code> at index 0, * <code>q</code> at index 1, the seed at index 2, and the counter value * at index 3, or null if the seed does not yield suitable numbers. */ BigInteger[] generatePandQ(byte[] seed, int L) { /* Useful variables */ int g = seed.length * 8; int n = (L - 1) / 160; int b = (L - 1) % 160; BigInteger SEED = new BigInteger(1, seed); BigInteger TWOG = TWO.pow(2 * g); /* Step 2 (Step 1 is getting seed). */ byte[] U1 = SHA(seed); byte[] U2 = SHA(toByteArray((SEED.add(ONE)).mod(TWOG))); xor(U1, U2); byte[] U = U1; /* Step 3: For q by setting the msb and lsb to 1 */ U[0] |= 0x80; U[19] |= 1; BigInteger q = new BigInteger(1, U); /* Step 5 */ if (!q.isProbablePrime(80)) { return null; } else { BigInteger V[] = new BigInteger[n + 1]; BigInteger offset = TWO; /* Step 6 */ for (int counter = 0; counter < 4096; counter++) { /* Step 7 */ for (int k = 0; k <= n; k++) { BigInteger K = BigInteger.valueOf(k); BigInteger tmp = (SEED.add(offset).add(K)).mod(TWOG); V[k] = new BigInteger(1, SHA(toByteArray(tmp))); } /* Step 8 */ BigInteger W = V[0]; for (int i = 1; i < n; i++) { W = W.add(V[i].multiply(TWO.pow(i * 160))); } W = W.add((V[n].mod(TWO.pow(b))).multiply(TWO.pow(n * 160))); BigInteger TWOLm1 = TWO.pow(L - 1); BigInteger X = W.add(TWOLm1); /* Step 9 */ BigInteger c = X.mod(q.multiply(TWO)); BigInteger p = X.subtract(c.subtract(ONE)); /* Step 10 - 13 */ if (p.compareTo(TWOLm1) > -1 && p.isProbablePrime(80)) { BigInteger[] result = {p, q, SEED, BigInteger.valueOf(counter)}; return result; } offset = offset.add(BigInteger.valueOf(n)).add(ONE); } return null; } } /* * Generates the <code>g</code> parameter for DSA. * * @param p the prime, <code>p</code>. * @param q the subprime, <code>q</code>. * * @param the <code>g</code> */ BigInteger generateG(BigInteger p, BigInteger q) { BigInteger h = ONE; BigInteger pMinusOneOverQ = (p.subtract(ONE)).divide(q); BigInteger g = ONE; while (g.compareTo(TWO) < 0) { g = h.modPow(pMinusOneOverQ, p); h = h.add(ONE); } return g; } /* * Returns the SHA-1 digest of some data */ private byte[] SHA(byte[] array) { sha.engineReset(); sha.engineUpdate(array, 0, array.length); return sha.engineDigest(); } /* * Converts the result of a BigInteger.toByteArray call to an exact * signed magnitude representation for any positive number. */ private byte[] toByteArray(BigInteger bigInt) { byte[] result = bigInt.toByteArray(); if (result[0] == 0) { byte[] tmp = new byte[result.length - 1]; System.arraycopy(result, 1, tmp, 0, tmp.length); result = tmp; } return result; } /* * XORs U2 into U1 */ private void xor(byte[] U1, byte[] U2) { for (int i = 0; i < U1.length; i++) { U1[i] ^= U2[i]; } } }