/* * Copyright (c) 2004, 2007, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.print; import java.awt.GraphicsConfiguration; import java.awt.GraphicsDevice; import java.awt.Rectangle; import java.awt.Transparency; import java.awt.geom.AffineTransform; import java.awt.image.BufferedImage; import java.awt.image.ColorModel; import java.awt.image.DirectColorModel; import java.awt.image.WritableRaster; public class PrinterGraphicsConfig extends GraphicsConfiguration { static ColorModel theModel; GraphicsDevice gd; int pageWidth, pageHeight; AffineTransform deviceTransform; public PrinterGraphicsConfig(String printerID, AffineTransform deviceTx, int pageWid, int pageHgt) { this.pageWidth = pageWid; this.pageHeight = pageHgt; this.deviceTransform = deviceTx; this.gd = new PrinterGraphicsDevice(this, printerID); } /** * Return the graphics device associated with this configuration. */ public GraphicsDevice getDevice() { return gd; } public BufferedImage createCompatibleImage(int width, int height) { ColorModel model = getColorModel(); WritableRaster raster = model.createCompatibleWritableRaster(width, height); return new BufferedImage(model, raster, model.isAlphaPremultiplied(), null); } /** * Returns the color model associated with this configuration. */ public ColorModel getColorModel() { if (theModel == null) { BufferedImage bufImg = new BufferedImage(1,1, BufferedImage.TYPE_3BYTE_BGR); theModel = bufImg.getColorModel(); } return theModel; } /** * Returns the color model associated with this configuration that * supports the specified transparency. */ public ColorModel getColorModel(int transparency) { switch (transparency) { case Transparency.OPAQUE: return getColorModel(); case Transparency.BITMASK: return new DirectColorModel(25, 0xff0000, 0xff00, 0xff, 0x1000000); case Transparency.TRANSLUCENT: return ColorModel.getRGBdefault(); default: return null; } } /** * Returns the default Transform for this configuration. This * Transform is typically the Identity transform for most normal * screens. Device coordinates for screen and printer devices will * have the origin in the upper left-hand corner of the target region of * the device, with X coordinates * increasing to the right and Y coordinates increasing downwards. * For image buffers, this Transform will be the Identity transform. */ public AffineTransform getDefaultTransform() { return new AffineTransform(deviceTransform); } /** * * Returns a Transform that can be composed with the default Transform * of a Graphics2D so that 72 units in user space will equal 1 inch * in device space. * Given a Graphics2D, g, one can reset the transformation to create * such a mapping by using the following pseudocode: * <pre> * GraphicsConfiguration gc = g.getGraphicsConfiguration(); * * g.setTransform(gc.getDefaultTransform()); * g.transform(gc.getNormalizingTransform()); * </pre> * Note that sometimes this Transform will be identity (e.g. for * printers or metafile output) and that this Transform is only * as accurate as the information supplied by the underlying system. * For image buffers, this Transform will be the Identity transform, * since there is no valid distance measurement. */ public AffineTransform getNormalizingTransform() { return new AffineTransform(); } public Rectangle getBounds() { return new Rectangle(0, 0, pageWidth, pageHeight); } }