/* * reserved comment block * DO NOT REMOVE OR ALTER! */ /* * Copyright 2001-2004 The Apache Software Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Id: Mode.java,v 1.2.4.1 2005/09/19 05:18:11 pvedula Exp $ */ package com.sun.org.apache.xalan.internal.xsltc.compiler; import java.util.Enumeration; import java.util.Hashtable; import java.util.Iterator; import java.util.Vector; import com.sun.org.apache.bcel.internal.generic.Instruction; import com.sun.org.apache.bcel.internal.generic.BranchHandle; import com.sun.org.apache.bcel.internal.generic.ConstantPoolGen; import com.sun.org.apache.bcel.internal.generic.DUP; import com.sun.org.apache.bcel.internal.generic.GOTO_W; import com.sun.org.apache.bcel.internal.generic.IFLT; import com.sun.org.apache.bcel.internal.generic.ILOAD; import com.sun.org.apache.bcel.internal.generic.INVOKEINTERFACE; import com.sun.org.apache.bcel.internal.generic.INVOKEVIRTUAL; import com.sun.org.apache.bcel.internal.generic.ISTORE; import com.sun.org.apache.bcel.internal.generic.InstructionHandle; import com.sun.org.apache.bcel.internal.generic.InstructionList; import com.sun.org.apache.bcel.internal.generic.LocalVariableGen; import com.sun.org.apache.bcel.internal.generic.SWITCH; import com.sun.org.apache.bcel.internal.generic.TargetLostException; import com.sun.org.apache.bcel.internal.util.InstructionFinder; import com.sun.org.apache.xalan.internal.xsltc.DOM; import com.sun.org.apache.xalan.internal.xsltc.compiler.util.ClassGenerator; import com.sun.org.apache.xalan.internal.xsltc.compiler.util.MethodGenerator; import com.sun.org.apache.xalan.internal.xsltc.compiler.util.NamedMethodGenerator; import com.sun.org.apache.xalan.internal.xsltc.compiler.util.Util; import com.sun.org.apache.xml.internal.dtm.Axis; import com.sun.org.apache.xml.internal.dtm.DTM; /** * Mode gathers all the templates belonging to a given mode; * it is responsible for generating an appropriate * applyTemplates + (mode name) method in the translet. * @author Jacek Ambroziak * @author Santiago Pericas-Geertsen * @author Morten Jorgensen * @author Erwin Bolwidt <ejb@klomp.org> * @author G. Todd Miller */ final class Mode implements Constants { /** * The name of this mode as defined in the stylesheet. */ private final QName _name; /** * A reference to the stylesheet object that owns this mode. */ private final Stylesheet _stylesheet; /** * The name of the method in which this mode is compiled. */ private final String _methodName; /** * A vector of all the templates in this mode. */ private Vector _templates; /** * Group for patterns with node()-type kernel and child axis. */ private Vector _childNodeGroup = null; /** * Test sequence for patterns with node()-type kernel and child axis. */ private TestSeq _childNodeTestSeq = null; /** * Group for patterns with node()-type kernel and attribute axis. */ private Vector _attribNodeGroup = null; /** * Test sequence for patterns with node()-type kernel and attribute axis. */ private TestSeq _attribNodeTestSeq = null; /** * Group for patterns with id() or key()-type kernel. */ private Vector _idxGroup = null; /** * Test sequence for patterns with id() or key()-type kernel. */ private TestSeq _idxTestSeq = null; /** * Group for patterns with any other kernel type. */ private Vector[] _patternGroups; /** * Test sequence for patterns with any other kernel type. */ private TestSeq[] _testSeq; /** * A mapping between templates and test sequences. */ private Hashtable _neededTemplates = new Hashtable(); /** * A mapping between named templates and Mode objects. */ private Hashtable _namedTemplates = new Hashtable(); /** * A mapping between templates and instruction handles. */ private Hashtable _templateIHs = new Hashtable(); /** * A mapping between templates and instruction lists. */ private Hashtable _templateILs = new Hashtable(); /** * A reference to the pattern matching the root node. */ private LocationPathPattern _rootPattern = null; /** * Stores ranges of template precendences for the compilation * of apply-imports (a Hashtable for historical reasons). */ private Hashtable _importLevels = null; /** * A mapping between key names and keys. */ private Hashtable _keys = null; /** * Variable index for the current node used in code generation. */ private int _currentIndex; /** * Creates a new Mode. * * @param name A textual representation of the mode's QName * @param stylesheet The Stylesheet in which the mode occured * @param suffix A suffix to append to the method name for this mode * (normally a sequence number - still in a String). */ public Mode(QName name, Stylesheet stylesheet, String suffix) { _name = name; _stylesheet = stylesheet; _methodName = APPLY_TEMPLATES + suffix; _templates = new Vector(); _patternGroups = new Vector[32]; } /** * Returns the name of the method (_not_ function) that will be * compiled for this mode. Normally takes the form 'applyTemplates()' * or * 'applyTemplates2()'. * * @return Method name for this mode */ public String functionName() { return _methodName; } public String functionName(int min, int max) { if (_importLevels == null) { _importLevels = new Hashtable(); } _importLevels.put(new Integer(max), new Integer(min)); return _methodName + '_' + max; } /** * Shortcut to get the class compiled for this mode (will be inlined). */ private String getClassName() { return _stylesheet.getClassName(); } public Stylesheet getStylesheet() { return _stylesheet; } public void addTemplate(Template template) { _templates.addElement(template); } private Vector quicksort(Vector templates, int p, int r) { if (p < r) { final int q = partition(templates, p, r); quicksort(templates, p, q); quicksort(templates, q + 1, r); } return templates; } private int partition(Vector templates, int p, int r) { final Template x = (Template)templates.elementAt(p); int i = p - 1; int j = r + 1; while (true) { while (x.compareTo((Template)templates.elementAt(--j)) > 0); while (x.compareTo((Template)templates.elementAt(++i)) < 0); if (i < j) { templates.set(j, templates.set(i, templates.elementAt(j))); } else { return j; } } } /** * Process all the test patterns in this mode */ public void processPatterns(Hashtable keys) { _keys = keys; /* System.out.println("Before Sort " + _name); for (int i = 0; i < _templates.size(); i++) { System.out.println("name = " + ((Template)_templates.elementAt(i)).getName()); System.out.println("pattern = " + ((Template)_templates.elementAt(i)).getPattern()); System.out.println("priority = " + ((Template)_templates.elementAt(i)).getPriority()); System.out.println("position = " + ((Template)_templates.elementAt(i)).getPosition()); } */ _templates = quicksort(_templates, 0, _templates.size() - 1); /* System.out.println("\n After Sort " + _name); for (int i = 0; i < _templates.size(); i++) { System.out.println("name = " + ((Template)_templates.elementAt(i)).getName()); System.out.println("pattern = " + ((Template)_templates.elementAt(i)).getPattern()); System.out.println("priority = " + ((Template)_templates.elementAt(i)).getPriority()); System.out.println("position = " + ((Template)_templates.elementAt(i)).getPosition()); } */ // Traverse all templates final Enumeration templates = _templates.elements(); while (templates.hasMoreElements()) { // Get the next template final Template template = (Template)templates.nextElement(); /* * Add this template to a table of named templates if it has a name. * If there are multiple templates with the same name, all but one * (the one with highest priority) will be disabled. */ if (template.isNamed() && !template.disabled()) { _namedTemplates.put(template, this); } // Add this template to a test sequence if it has a pattern final Pattern pattern = template.getPattern(); if (pattern != null) { flattenAlternative(pattern, template, keys); } } prepareTestSequences(); } /** * This method will break up alternative patterns (ie. unions of patterns, * such as match="A/B | C/B") and add the basic patterns to their * respective pattern groups. */ private void flattenAlternative(Pattern pattern, Template template, Hashtable keys) { // Patterns on type id() and key() are special since they do not have // any kernel node type (it can be anything as long as the node is in // the id's or key's index). if (pattern instanceof IdKeyPattern) { final IdKeyPattern idkey = (IdKeyPattern)pattern; idkey.setTemplate(template); if (_idxGroup == null) _idxGroup = new Vector(); _idxGroup.add(pattern); } // Alternative patterns are broken up and re-processed recursively else if (pattern instanceof AlternativePattern) { final AlternativePattern alt = (AlternativePattern)pattern; flattenAlternative(alt.getLeft(), template, keys); flattenAlternative(alt.getRight(), template, keys); } // Finally we have a pattern that can be added to a test sequence! else if (pattern instanceof LocationPathPattern) { final LocationPathPattern lpp = (LocationPathPattern)pattern; lpp.setTemplate(template); addPatternToGroup(lpp); } } /** * Group patterns by NodeTests of their last Step * Keep them sorted by priority within group */ private void addPatternToGroup(final LocationPathPattern lpp) { // id() and key()-type patterns do not have a kernel type if (lpp instanceof IdKeyPattern) { addPattern(-1, lpp); } // Otherwise get the kernel pattern from the LPP else { // kernel pattern is the last (maybe only) Step final StepPattern kernel = lpp.getKernelPattern(); if (kernel != null) { addPattern(kernel.getNodeType(), lpp); } else if (_rootPattern == null || lpp.noSmallerThan(_rootPattern)) { _rootPattern = lpp; } } } /** * Adds a pattern to a pattern group */ private void addPattern(int kernelType, LocationPathPattern pattern) { // Make sure the array of pattern groups is long enough final int oldLength = _patternGroups.length; if (kernelType >= oldLength) { Vector[] newGroups = new Vector[kernelType * 2]; System.arraycopy(_patternGroups, 0, newGroups, 0, oldLength); _patternGroups = newGroups; } // Find the vector to put this pattern into Vector patterns; if (kernelType == DOM.NO_TYPE) { if (pattern.getAxis() == Axis.ATTRIBUTE) { patterns = (_attribNodeGroup == null) ? (_attribNodeGroup = new Vector(2)) : _attribNodeGroup; } else { patterns = (_childNodeGroup == null) ? (_childNodeGroup = new Vector(2)) : _childNodeGroup; } } else { patterns = (_patternGroups[kernelType] == null) ? (_patternGroups[kernelType] = new Vector(2)) : _patternGroups[kernelType]; } if (patterns.size() == 0) { patterns.addElement(pattern); } else { boolean inserted = false; for (int i = 0; i < patterns.size(); i++) { final LocationPathPattern lppToCompare = (LocationPathPattern)patterns.elementAt(i); if (pattern.noSmallerThan(lppToCompare)) { inserted = true; patterns.insertElementAt(pattern, i); break; } } if (inserted == false) { patterns.addElement(pattern); } } } /** * Complete test sequences of a given type by adding all patterns * from a given group. */ private void completeTestSequences(int nodeType, Vector patterns) { if (patterns != null) { if (_patternGroups[nodeType] == null) { _patternGroups[nodeType] = patterns; } else { final int m = patterns.size(); for (int j = 0; j < m; j++) { addPattern(nodeType, (LocationPathPattern) patterns.elementAt(j)); } } } } /** * Build test sequences. The first step is to complete the test sequences * by including patterns of "*" and "node()" kernel to all element test * sequences, and of "@*" to all attribute test sequences. */ private void prepareTestSequences() { final Vector starGroup = _patternGroups[DTM.ELEMENT_NODE]; final Vector atStarGroup = _patternGroups[DTM.ATTRIBUTE_NODE]; // Complete test sequence for "text()" with "child::node()" completeTestSequences(DTM.TEXT_NODE, _childNodeGroup); // Complete test sequence for "*" with "child::node()" completeTestSequences(DTM.ELEMENT_NODE, _childNodeGroup); // Complete test sequence for "pi()" with "child::node()" completeTestSequences(DTM.PROCESSING_INSTRUCTION_NODE, _childNodeGroup); // Complete test sequence for "comment()" with "child::node()" completeTestSequences(DTM.COMMENT_NODE, _childNodeGroup); // Complete test sequence for "@*" with "attribute::node()" completeTestSequences(DTM.ATTRIBUTE_NODE, _attribNodeGroup); final Vector names = _stylesheet.getXSLTC().getNamesIndex(); if (starGroup != null || atStarGroup != null || _childNodeGroup != null || _attribNodeGroup != null) { final int n = _patternGroups.length; // Complete test sequence for user-defined types for (int i = DTM.NTYPES; i < n; i++) { if (_patternGroups[i] == null) continue; final String name = (String) names.elementAt(i - DTM.NTYPES); if (isAttributeName(name)) { // If an attribute then copy "@*" to its test sequence completeTestSequences(i, atStarGroup); // And also copy "attribute::node()" to its test sequence completeTestSequences(i, _attribNodeGroup); } else { // If an element then copy "*" to its test sequence completeTestSequences(i, starGroup); // And also copy "child::node()" to its test sequence completeTestSequences(i, _childNodeGroup); } } } _testSeq = new TestSeq[DTM.NTYPES + names.size()]; final int n = _patternGroups.length; for (int i = 0; i < n; i++) { final Vector patterns = _patternGroups[i]; if (patterns != null) { final TestSeq testSeq = new TestSeq(patterns, i, this); // System.out.println("testSeq[" + i + "] = " + testSeq); testSeq.reduce(); _testSeq[i] = testSeq; testSeq.findTemplates(_neededTemplates); } } if (_childNodeGroup != null && _childNodeGroup.size() > 0) { _childNodeTestSeq = new TestSeq(_childNodeGroup, -1, this); _childNodeTestSeq.reduce(); _childNodeTestSeq.findTemplates(_neededTemplates); } /* if (_attribNodeGroup != null && _attribNodeGroup.size() > 0) { _attribNodeTestSeq = new TestSeq(_attribNodeGroup, -1, this); _attribNodeTestSeq.reduce(); _attribNodeTestSeq.findTemplates(_neededTemplates); } */ if (_idxGroup != null && _idxGroup.size() > 0) { _idxTestSeq = new TestSeq(_idxGroup, this); _idxTestSeq.reduce(); _idxTestSeq.findTemplates(_neededTemplates); } if (_rootPattern != null) { // doesn't matter what is 'put', only key matters _neededTemplates.put(_rootPattern.getTemplate(), this); } } private void compileNamedTemplate(Template template, ClassGenerator classGen) { final ConstantPoolGen cpg = classGen.getConstantPool(); final InstructionList il = new InstructionList(); String methodName = Util.escape(template.getName().toString()); int numParams = 0; if (template.isSimpleNamedTemplate()) { Vector parameters = template.getParameters(); numParams = parameters.size(); } // Initialize the types and names arrays for the NamedMethodGenerator. com.sun.org.apache.bcel.internal.generic.Type[] types = new com.sun.org.apache.bcel.internal.generic.Type[4 + numParams]; String[] names = new String[4 + numParams]; types[0] = Util.getJCRefType(DOM_INTF_SIG); types[1] = Util.getJCRefType(NODE_ITERATOR_SIG); types[2] = Util.getJCRefType(TRANSLET_OUTPUT_SIG); types[3] = com.sun.org.apache.bcel.internal.generic.Type.INT; names[0] = DOCUMENT_PNAME; names[1] = ITERATOR_PNAME; names[2] = TRANSLET_OUTPUT_PNAME; names[3] = NODE_PNAME; // For simple named templates, the signature of the generated method // is not fixed. It depends on the number of parameters declared in the // template. for (int i = 4; i < 4 + numParams; i++) { types[i] = Util.getJCRefType(OBJECT_SIG); names[i] = "param" + String.valueOf(i-4); } NamedMethodGenerator methodGen = new NamedMethodGenerator(ACC_PUBLIC, com.sun.org.apache.bcel.internal.generic.Type.VOID, types, names, methodName, getClassName(), il, cpg); il.append(template.compile(classGen, methodGen)); il.append(RETURN); methodGen.stripAttributes(true); methodGen.setMaxLocals(); methodGen.setMaxStack(); methodGen.removeNOPs(); classGen.addMethod(methodGen.getMethod()); } private void compileTemplates(ClassGenerator classGen, MethodGenerator methodGen, InstructionHandle next) { Enumeration templates = _namedTemplates.keys(); while (templates.hasMoreElements()) { final Template template = (Template)templates.nextElement(); compileNamedTemplate(template, classGen); } templates = _neededTemplates.keys(); while (templates.hasMoreElements()) { final Template template = (Template)templates.nextElement(); if (template.hasContents()) { // !!! TODO templates both named and matched InstructionList til = template.compile(classGen, methodGen); til.append(new GOTO_W(next)); _templateILs.put(template, til); _templateIHs.put(template, til.getStart()); } else { // empty template _templateIHs.put(template, next); } } } private void appendTemplateCode(InstructionList body) { final Enumeration templates = _neededTemplates.keys(); while (templates.hasMoreElements()) { final Object iList = _templateILs.get(templates.nextElement()); if (iList != null) { body.append((InstructionList)iList); } } } private void appendTestSequences(InstructionList body) { final int n = _testSeq.length; for (int i = 0; i < n; i++) { final TestSeq testSeq = _testSeq[i]; if (testSeq != null) { InstructionList il = testSeq.getInstructionList(); if (il != null) body.append(il); // else trivial TestSeq } } } public static void compileGetChildren(ClassGenerator classGen, MethodGenerator methodGen, int node) { final ConstantPoolGen cpg = classGen.getConstantPool(); final InstructionList il = methodGen.getInstructionList(); final int git = cpg.addInterfaceMethodref(DOM_INTF, GET_CHILDREN, GET_CHILDREN_SIG); il.append(methodGen.loadDOM()); il.append(new ILOAD(node)); il.append(new INVOKEINTERFACE(git, 2)); } /** * Compiles the default handling for DOM elements: traverse all children */ private InstructionList compileDefaultRecursion(ClassGenerator classGen, MethodGenerator methodGen, InstructionHandle next) { final ConstantPoolGen cpg = classGen.getConstantPool(); final InstructionList il = new InstructionList(); final String applyTemplatesSig = classGen.getApplyTemplatesSig(); final int git = cpg.addInterfaceMethodref(DOM_INTF, GET_CHILDREN, GET_CHILDREN_SIG); final int applyTemplates = cpg.addMethodref(getClassName(), functionName(), applyTemplatesSig); il.append(classGen.loadTranslet()); il.append(methodGen.loadDOM()); il.append(methodGen.loadDOM()); il.append(new ILOAD(_currentIndex)); il.append(new INVOKEINTERFACE(git, 2)); il.append(methodGen.loadHandler()); il.append(new INVOKEVIRTUAL(applyTemplates)); il.append(new GOTO_W(next)); return il; } /** * Compiles the default action for DOM text nodes and attribute nodes: * output the node's text value */ private InstructionList compileDefaultText(ClassGenerator classGen, MethodGenerator methodGen, InstructionHandle next) { final ConstantPoolGen cpg = classGen.getConstantPool(); final InstructionList il = new InstructionList(); final int chars = cpg.addInterfaceMethodref(DOM_INTF, CHARACTERS, CHARACTERS_SIG); il.append(methodGen.loadDOM()); il.append(new ILOAD(_currentIndex)); il.append(methodGen.loadHandler()); il.append(new INVOKEINTERFACE(chars, 3)); il.append(new GOTO_W(next)); return il; } private InstructionList compileNamespaces(ClassGenerator classGen, MethodGenerator methodGen, boolean[] isNamespace, boolean[] isAttribute, boolean attrFlag, InstructionHandle defaultTarget) { final XSLTC xsltc = classGen.getParser().getXSLTC(); final ConstantPoolGen cpg = classGen.getConstantPool(); // Append switch() statement - namespace test dispatch loop final Vector namespaces = xsltc.getNamespaceIndex(); final Vector names = xsltc.getNamesIndex(); final int namespaceCount = namespaces.size() + 1; final int namesCount = names.size(); final InstructionList il = new InstructionList(); final int[] types = new int[namespaceCount]; final InstructionHandle[] targets = new InstructionHandle[types.length]; if (namespaceCount > 0) { boolean compiled = false; // Initialize targets for namespace() switch statement for (int i = 0; i < namespaceCount; i++) { targets[i] = defaultTarget; types[i] = i; } // Add test sequences for known namespace types for (int i = DTM.NTYPES; i < (DTM.NTYPES+namesCount); i++) { if ((isNamespace[i]) && (isAttribute[i] == attrFlag)) { String name = (String)names.elementAt(i-DTM.NTYPES); String namespace = name.substring(0,name.lastIndexOf(':')); final int type = xsltc.registerNamespace(namespace); if ((i < _testSeq.length) && (_testSeq[i] != null)) { targets[type] = (_testSeq[i]).compile(classGen, methodGen, defaultTarget); compiled = true; } } } // Return "null" if no test sequences were compiled if (!compiled) return(null); // Append first code in applyTemplates() - get type of current node final int getNS = cpg.addInterfaceMethodref(DOM_INTF, "getNamespaceType", "(I)I"); il.append(methodGen.loadDOM()); il.append(new ILOAD(_currentIndex)); il.append(new INVOKEINTERFACE(getNS, 2)); il.append(new SWITCH(types, targets, defaultTarget)); return(il); } else { return(null); } } /** * Compiles the applyTemplates() method and adds it to the translet. * This is the main dispatch method. */ public void compileApplyTemplates(ClassGenerator classGen) { final XSLTC xsltc = classGen.getParser().getXSLTC(); final ConstantPoolGen cpg = classGen.getConstantPool(); final Vector names = xsltc.getNamesIndex(); // Create the applyTemplates() method final com.sun.org.apache.bcel.internal.generic.Type[] argTypes = new com.sun.org.apache.bcel.internal.generic.Type[3]; argTypes[0] = Util.getJCRefType(DOM_INTF_SIG); argTypes[1] = Util.getJCRefType(NODE_ITERATOR_SIG); argTypes[2] = Util.getJCRefType(TRANSLET_OUTPUT_SIG); final String[] argNames = new String[3]; argNames[0] = DOCUMENT_PNAME; argNames[1] = ITERATOR_PNAME; argNames[2] = TRANSLET_OUTPUT_PNAME; final InstructionList mainIL = new InstructionList(); final MethodGenerator methodGen = new MethodGenerator(ACC_PUBLIC | ACC_FINAL, com.sun.org.apache.bcel.internal.generic.Type.VOID, argTypes, argNames, functionName(), getClassName(), mainIL, classGen.getConstantPool()); methodGen.addException("com.sun.org.apache.xalan.internal.xsltc.TransletException"); // Create a local variable to hold the current node final LocalVariableGen current; current = methodGen.addLocalVariable2("current", com.sun.org.apache.bcel.internal.generic.Type.INT, mainIL.getEnd()); _currentIndex = current.getIndex(); // Create the "body" instruction list that will eventually hold the // code for the entire method (other ILs will be appended). final InstructionList body = new InstructionList(); body.append(NOP); // Create an instruction list that contains the default next-node // iteration final InstructionList ilLoop = new InstructionList(); ilLoop.append(methodGen.loadIterator()); ilLoop.append(methodGen.nextNode()); ilLoop.append(DUP); ilLoop.append(new ISTORE(_currentIndex)); // The body of this code can get very large - large than can be handled // by a single IFNE(body.getStart()) instruction - need workaround: final BranchHandle ifeq = ilLoop.append(new IFLT(null)); final BranchHandle loop = ilLoop.append(new GOTO_W(null)); ifeq.setTarget(ilLoop.append(RETURN)); // applyTemplates() ends here! final InstructionHandle ihLoop = ilLoop.getStart(); // Compile default handling of elements (traverse children) InstructionList ilRecurse = compileDefaultRecursion(classGen, methodGen, ihLoop); InstructionHandle ihRecurse = ilRecurse.getStart(); // Compile default handling of text/attribute nodes (output text) InstructionList ilText = compileDefaultText(classGen, methodGen, ihLoop); InstructionHandle ihText = ilText.getStart(); // Distinguish attribute/element/namespace tests for further processing final int[] types = new int[DTM.NTYPES + names.size()]; for (int i = 0; i < types.length; i++) { types[i] = i; } // Initialize isAttribute[] and isNamespace[] arrays final boolean[] isAttribute = new boolean[types.length]; final boolean[] isNamespace = new boolean[types.length]; for (int i = 0; i < names.size(); i++) { final String name = (String)names.elementAt(i); isAttribute[i + DTM.NTYPES] = isAttributeName(name); isNamespace[i + DTM.NTYPES] = isNamespaceName(name); } // Compile all templates - regardless of pattern type compileTemplates(classGen, methodGen, ihLoop); // Handle template with explicit "*" pattern final TestSeq elemTest = _testSeq[DTM.ELEMENT_NODE]; InstructionHandle ihElem = ihRecurse; if (elemTest != null) ihElem = elemTest.compile(classGen, methodGen, ihRecurse); // Handle template with explicit "@*" pattern final TestSeq attrTest = _testSeq[DTM.ATTRIBUTE_NODE]; InstructionHandle ihAttr = ihText; if (attrTest != null) ihAttr = attrTest.compile(classGen, methodGen, ihAttr); // Do tests for id() and key() patterns first InstructionList ilKey = null; if (_idxTestSeq != null) { loop.setTarget(_idxTestSeq.compile(classGen, methodGen, body.getStart())); ilKey = _idxTestSeq.getInstructionList(); } else { loop.setTarget(body.getStart()); } // If there is a match on node() we need to replace ihElem // and ihText if the priority of node() is higher if (_childNodeTestSeq != null) { // Compare priorities of node() and "*" double nodePrio = _childNodeTestSeq.getPriority(); int nodePos = _childNodeTestSeq.getPosition(); double elemPrio = (0 - Double.MAX_VALUE); int elemPos = Integer.MIN_VALUE; if (elemTest != null) { elemPrio = elemTest.getPriority(); elemPos = elemTest.getPosition(); } if (elemPrio == Double.NaN || elemPrio < nodePrio || (elemPrio == nodePrio && elemPos < nodePos)) { ihElem = _childNodeTestSeq.compile(classGen, methodGen, ihLoop); } // Compare priorities of node() and text() final TestSeq textTest = _testSeq[DTM.TEXT_NODE]; double textPrio = (0 - Double.MAX_VALUE); int textPos = Integer.MIN_VALUE; if (textTest != null) { textPrio = textTest.getPriority(); textPos = textTest.getPosition(); } if (textPrio == Double.NaN || textPrio < nodePrio || (textPrio == nodePrio && textPos < nodePos)) { ihText = _childNodeTestSeq.compile(classGen, methodGen, ihLoop); _testSeq[DTM.TEXT_NODE] = _childNodeTestSeq; } } // Handle templates with "ns:*" pattern InstructionHandle elemNamespaceHandle = ihElem; InstructionList nsElem = compileNamespaces(classGen, methodGen, isNamespace, isAttribute, false, ihElem); if (nsElem != null) elemNamespaceHandle = nsElem.getStart(); // Handle templates with "ns:@*" pattern InstructionHandle attrNamespaceHandle = ihAttr; InstructionList nsAttr = compileNamespaces(classGen, methodGen, isNamespace, isAttribute, true, ihAttr); if (nsAttr != null) attrNamespaceHandle = nsAttr.getStart(); // Handle templates with "ns:elem" or "ns:@attr" pattern final InstructionHandle[] targets = new InstructionHandle[types.length]; for (int i = DTM.NTYPES; i < targets.length; i++) { final TestSeq testSeq = _testSeq[i]; // Jump straight to namespace tests ? if (isNamespace[i]) { if (isAttribute[i]) targets[i] = attrNamespaceHandle; else targets[i] = elemNamespaceHandle; } // Test first, then jump to namespace tests else if (testSeq != null) { if (isAttribute[i]) targets[i] = testSeq.compile(classGen, methodGen, attrNamespaceHandle); else targets[i] = testSeq.compile(classGen, methodGen, elemNamespaceHandle); } else { targets[i] = ihLoop; } } // Handle pattern with match on root node - default: traverse children targets[DTM.ROOT_NODE] = _rootPattern != null ? getTemplateInstructionHandle(_rootPattern.getTemplate()) : ihRecurse; // Handle pattern with match on root node - default: traverse children targets[DTM.DOCUMENT_NODE] = _rootPattern != null ? getTemplateInstructionHandle(_rootPattern.getTemplate()) : ihRecurse; // Handle any pattern with match on text nodes - default: output text targets[DTM.TEXT_NODE] = _testSeq[DTM.TEXT_NODE] != null ? _testSeq[DTM.TEXT_NODE].compile(classGen, methodGen, ihText) : ihText; // This DOM-type is not in use - default: process next node targets[DTM.NAMESPACE_NODE] = ihLoop; // Match unknown element in DOM - default: check for namespace match targets[DTM.ELEMENT_NODE] = elemNamespaceHandle; // Match unknown attribute in DOM - default: check for namespace match targets[DTM.ATTRIBUTE_NODE] = attrNamespaceHandle; // Match on processing instruction - default: process next node InstructionHandle ihPI = ihLoop; if (_childNodeTestSeq != null) ihPI = ihElem; if (_testSeq[DTM.PROCESSING_INSTRUCTION_NODE] != null) targets[DTM.PROCESSING_INSTRUCTION_NODE] = _testSeq[DTM.PROCESSING_INSTRUCTION_NODE]. compile(classGen, methodGen, ihPI); else targets[DTM.PROCESSING_INSTRUCTION_NODE] = ihPI; // Match on comments - default: process next node InstructionHandle ihComment = ihLoop; if (_childNodeTestSeq != null) ihComment = ihElem; targets[DTM.COMMENT_NODE] = _testSeq[DTM.COMMENT_NODE] != null ? _testSeq[DTM.COMMENT_NODE].compile(classGen, methodGen, ihComment) : ihComment; // This DOM-type is not in use - default: process next node targets[DTM.CDATA_SECTION_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.DOCUMENT_FRAGMENT_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.DOCUMENT_TYPE_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.ENTITY_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.ENTITY_REFERENCE_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.NOTATION_NODE] = ihLoop; // Now compile test sequences for various match patterns: for (int i = DTM.NTYPES; i < targets.length; i++) { final TestSeq testSeq = _testSeq[i]; // Jump straight to namespace tests ? if ((testSeq == null) || (isNamespace[i])) { if (isAttribute[i]) targets[i] = attrNamespaceHandle; else targets[i] = elemNamespaceHandle; } // Match on node type else { if (isAttribute[i]) targets[i] = testSeq.compile(classGen, methodGen, attrNamespaceHandle); else targets[i] = testSeq.compile(classGen, methodGen, elemNamespaceHandle); } } if (ilKey != null) body.insert(ilKey); // Append first code in applyTemplates() - get type of current node final int getType = cpg.addInterfaceMethodref(DOM_INTF, "getExpandedTypeID", "(I)I"); body.append(methodGen.loadDOM()); body.append(new ILOAD(_currentIndex)); body.append(new INVOKEINTERFACE(getType, 2)); // Append switch() statement - main dispatch loop in applyTemplates() InstructionHandle disp = body.append(new SWITCH(types, targets, ihLoop)); // Append all the "case:" statements appendTestSequences(body); // Append the actual template code appendTemplateCode(body); // Append NS:* node tests (if any) if (nsElem != null) body.append(nsElem); // Append NS:@* node tests (if any) if (nsAttr != null) body.append(nsAttr); // Append default action for element and root nodes body.append(ilRecurse); // Append default action for text and attribute nodes body.append(ilText); // putting together constituent instruction lists mainIL.append(new GOTO_W(ihLoop)); mainIL.append(body); // fall through to ilLoop mainIL.append(ilLoop); peepHoleOptimization(methodGen); methodGen.stripAttributes(true); methodGen.setMaxLocals(); methodGen.setMaxStack(); methodGen.removeNOPs(); classGen.addMethod(methodGen.getMethod()); // Compile method(s) for <xsl:apply-imports/> for this mode if (_importLevels != null) { Enumeration levels = _importLevels.keys(); while (levels.hasMoreElements()) { Integer max = (Integer)levels.nextElement(); Integer min = (Integer)_importLevels.get(max); compileApplyImports(classGen, min.intValue(), max.intValue()); } } } private void compileTemplateCalls(ClassGenerator classGen, MethodGenerator methodGen, InstructionHandle next, int min, int max){ Enumeration templates = _neededTemplates.keys(); while (templates.hasMoreElements()) { final Template template = (Template)templates.nextElement(); final int prec = template.getImportPrecedence(); if ((prec >= min) && (prec < max)) { if (template.hasContents()) { InstructionList til = template.compile(classGen, methodGen); til.append(new GOTO_W(next)); _templateILs.put(template, til); _templateIHs.put(template, til.getStart()); } else { // empty template _templateIHs.put(template, next); } } } } public void compileApplyImports(ClassGenerator classGen, int min, int max) { final XSLTC xsltc = classGen.getParser().getXSLTC(); final ConstantPoolGen cpg = classGen.getConstantPool(); final Vector names = xsltc.getNamesIndex(); // Clear some datastructures _namedTemplates = new Hashtable(); _neededTemplates = new Hashtable(); _templateIHs = new Hashtable(); _templateILs = new Hashtable(); _patternGroups = new Vector[32]; _rootPattern = null; // IMPORTANT: Save orignal & complete set of templates!!!! Vector oldTemplates = _templates; // Gather templates that are within the scope of this import _templates = new Vector(); final Enumeration templates = oldTemplates.elements(); while (templates.hasMoreElements()) { final Template template = (Template)templates.nextElement(); final int prec = template.getImportPrecedence(); if ((prec >= min) && (prec < max)) addTemplate(template); } // Process all patterns from those templates processPatterns(_keys); // Create the applyTemplates() method final com.sun.org.apache.bcel.internal.generic.Type[] argTypes = new com.sun.org.apache.bcel.internal.generic.Type[4]; argTypes[0] = Util.getJCRefType(DOM_INTF_SIG); argTypes[1] = Util.getJCRefType(NODE_ITERATOR_SIG); argTypes[2] = Util.getJCRefType(TRANSLET_OUTPUT_SIG); argTypes[3] = com.sun.org.apache.bcel.internal.generic.Type.INT; final String[] argNames = new String[4]; argNames[0] = DOCUMENT_PNAME; argNames[1] = ITERATOR_PNAME; argNames[2] = TRANSLET_OUTPUT_PNAME; argNames[3] = NODE_PNAME; final InstructionList mainIL = new InstructionList(); final MethodGenerator methodGen = new MethodGenerator(ACC_PUBLIC | ACC_FINAL, com.sun.org.apache.bcel.internal.generic.Type.VOID, argTypes, argNames, functionName()+'_'+max, getClassName(), mainIL, classGen.getConstantPool()); methodGen.addException("com.sun.org.apache.xalan.internal.xsltc.TransletException"); // Create the local variable to hold the current node final LocalVariableGen current; current = methodGen.addLocalVariable2("current", com.sun.org.apache.bcel.internal.generic.Type.INT, mainIL.getEnd()); _currentIndex = current.getIndex(); mainIL.append(new ILOAD(methodGen.getLocalIndex(NODE_PNAME))); mainIL.append(new ISTORE(_currentIndex)); // Create the "body" instruction list that will eventually hold the // code for the entire method (other ILs will be appended). final InstructionList body = new InstructionList(); body.append(NOP); // Create an instruction list that contains the default next-node // iteration final InstructionList ilLoop = new InstructionList(); ilLoop.append(RETURN); final InstructionHandle ihLoop = ilLoop.getStart(); // Compile default handling of elements (traverse children) InstructionList ilRecurse = compileDefaultRecursion(classGen, methodGen, ihLoop); InstructionHandle ihRecurse = ilRecurse.getStart(); // Compile default handling of text/attribute nodes (output text) InstructionList ilText = compileDefaultText(classGen, methodGen, ihLoop); InstructionHandle ihText = ilText.getStart(); // Distinguish attribute/element/namespace tests for further processing final int[] types = new int[DTM.NTYPES + names.size()]; for (int i = 0; i < types.length; i++) { types[i] = i; } final boolean[] isAttribute = new boolean[types.length]; final boolean[] isNamespace = new boolean[types.length]; for (int i = 0; i < names.size(); i++) { final String name = (String)names.elementAt(i); isAttribute[i+DTM.NTYPES] = isAttributeName(name); isNamespace[i+DTM.NTYPES] = isNamespaceName(name); } // Compile all templates - regardless of pattern type compileTemplateCalls(classGen, methodGen, ihLoop, min, max); // Handle template with explicit "*" pattern final TestSeq elemTest = _testSeq[DTM.ELEMENT_NODE]; InstructionHandle ihElem = ihRecurse; if (elemTest != null) { ihElem = elemTest.compile(classGen, methodGen, ihLoop); } // Handle template with explicit "@*" pattern final TestSeq attrTest = _testSeq[DTM.ATTRIBUTE_NODE]; InstructionHandle ihAttr = ihLoop; if (attrTest != null) { ihAttr = attrTest.compile(classGen, methodGen, ihAttr); } // Do tests for id() and key() patterns first InstructionList ilKey = null; if (_idxTestSeq != null) { ilKey = _idxTestSeq.getInstructionList(); } // If there is a match on node() we need to replace ihElem // and ihText if the priority of node() is higher if (_childNodeTestSeq != null) { // Compare priorities of node() and "*" double nodePrio = _childNodeTestSeq.getPriority(); int nodePos = _childNodeTestSeq.getPosition(); double elemPrio = (0 - Double.MAX_VALUE); int elemPos = Integer.MIN_VALUE; if (elemTest != null) { elemPrio = elemTest.getPriority(); elemPos = elemTest.getPosition(); } if (elemPrio == Double.NaN || elemPrio < nodePrio || (elemPrio == nodePrio && elemPos < nodePos)) { ihElem = _childNodeTestSeq.compile(classGen, methodGen, ihLoop); } // Compare priorities of node() and text() final TestSeq textTest = _testSeq[DTM.TEXT_NODE]; double textPrio = (0 - Double.MAX_VALUE); int textPos = Integer.MIN_VALUE; if (textTest != null) { textPrio = textTest.getPriority(); textPos = textTest.getPosition(); } if (textPrio == Double.NaN || textPrio < nodePrio || (textPrio == nodePrio && textPos < nodePos)) { ihText = _childNodeTestSeq.compile(classGen, methodGen, ihLoop); _testSeq[DTM.TEXT_NODE] = _childNodeTestSeq; } } // Handle templates with "ns:*" pattern InstructionHandle elemNamespaceHandle = ihElem; InstructionList nsElem = compileNamespaces(classGen, methodGen, isNamespace, isAttribute, false, ihElem); if (nsElem != null) elemNamespaceHandle = nsElem.getStart(); // Handle templates with "ns:@*" pattern InstructionList nsAttr = compileNamespaces(classGen, methodGen, isNamespace, isAttribute, true, ihAttr); InstructionHandle attrNamespaceHandle = ihAttr; if (nsAttr != null) attrNamespaceHandle = nsAttr.getStart(); // Handle templates with "ns:elem" or "ns:@attr" pattern final InstructionHandle[] targets = new InstructionHandle[types.length]; for (int i = DTM.NTYPES; i < targets.length; i++) { final TestSeq testSeq = _testSeq[i]; // Jump straight to namespace tests ? if (isNamespace[i]) { if (isAttribute[i]) targets[i] = attrNamespaceHandle; else targets[i] = elemNamespaceHandle; } // Test first, then jump to namespace tests else if (testSeq != null) { if (isAttribute[i]) targets[i] = testSeq.compile(classGen, methodGen, attrNamespaceHandle); else targets[i] = testSeq.compile(classGen, methodGen, elemNamespaceHandle); } else { targets[i] = ihLoop; } } // Handle pattern with match on root node - default: traverse children targets[DTM.ROOT_NODE] = _rootPattern != null ? getTemplateInstructionHandle(_rootPattern.getTemplate()) : ihRecurse; // Handle pattern with match on root node - default: traverse children targets[DTM.DOCUMENT_NODE] = _rootPattern != null ? getTemplateInstructionHandle(_rootPattern.getTemplate()) : ihRecurse; // %HZ%: Was ihLoop in XSLTC_DTM branch // Handle any pattern with match on text nodes - default: loop targets[DTM.TEXT_NODE] = _testSeq[DTM.TEXT_NODE] != null ? _testSeq[DTM.TEXT_NODE].compile(classGen, methodGen, ihText) : ihText; // This DOM-type is not in use - default: process next node targets[DTM.NAMESPACE_NODE] = ihLoop; // Match unknown element in DOM - default: check for namespace match targets[DTM.ELEMENT_NODE] = elemNamespaceHandle; // Match unknown attribute in DOM - default: check for namespace match targets[DTM.ATTRIBUTE_NODE] = attrNamespaceHandle; // Match on processing instruction - default: loop InstructionHandle ihPI = ihLoop; if (_childNodeTestSeq != null) ihPI = ihElem; if (_testSeq[DTM.PROCESSING_INSTRUCTION_NODE] != null) { targets[DTM.PROCESSING_INSTRUCTION_NODE] = _testSeq[DTM.PROCESSING_INSTRUCTION_NODE]. compile(classGen, methodGen, ihPI); } else { targets[DTM.PROCESSING_INSTRUCTION_NODE] = ihPI; } // Match on comments - default: process next node InstructionHandle ihComment = ihLoop; if (_childNodeTestSeq != null) ihComment = ihElem; targets[DTM.COMMENT_NODE] = _testSeq[DTM.COMMENT_NODE] != null ? _testSeq[DTM.COMMENT_NODE].compile(classGen, methodGen, ihComment) : ihComment; // This DOM-type is not in use - default: process next node targets[DTM.CDATA_SECTION_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.DOCUMENT_FRAGMENT_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.DOCUMENT_TYPE_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.ENTITY_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.ENTITY_REFERENCE_NODE] = ihLoop; // This DOM-type is not in use - default: process next node targets[DTM.NOTATION_NODE] = ihLoop; // Now compile test sequences for various match patterns: for (int i = DTM.NTYPES; i < targets.length; i++) { final TestSeq testSeq = _testSeq[i]; // Jump straight to namespace tests ? if ((testSeq == null) || (isNamespace[i])) { if (isAttribute[i]) targets[i] = attrNamespaceHandle; else targets[i] = elemNamespaceHandle; } // Match on node type else { if (isAttribute[i]) targets[i] = testSeq.compile(classGen, methodGen, attrNamespaceHandle); else targets[i] = testSeq.compile(classGen, methodGen, elemNamespaceHandle); } } if (ilKey != null) body.insert(ilKey); // Append first code in applyTemplates() - get type of current node final int getType = cpg.addInterfaceMethodref(DOM_INTF, "getExpandedTypeID", "(I)I"); body.append(methodGen.loadDOM()); body.append(new ILOAD(_currentIndex)); body.append(new INVOKEINTERFACE(getType, 2)); // Append switch() statement - main dispatch loop in applyTemplates() InstructionHandle disp = body.append(new SWITCH(types,targets,ihLoop)); // Append all the "case:" statements appendTestSequences(body); // Append the actual template code appendTemplateCode(body); // Append NS:* node tests (if any) if (nsElem != null) body.append(nsElem); // Append NS:@* node tests (if any) if (nsAttr != null) body.append(nsAttr); // Append default action for element and root nodes body.append(ilRecurse); // Append default action for text and attribute nodes body.append(ilText); // putting together constituent instruction lists mainIL.append(body); // fall through to ilLoop mainIL.append(ilLoop); peepHoleOptimization(methodGen); methodGen.stripAttributes(true); methodGen.setMaxLocals(); methodGen.setMaxStack(); methodGen.removeNOPs(); classGen.addMethod(methodGen.getMethod()); // Restore original (complete) set of templates for this transformation _templates = oldTemplates; } /** * Peephole optimization. */ private void peepHoleOptimization(MethodGenerator methodGen) { InstructionList il = methodGen.getInstructionList(); InstructionFinder find = new InstructionFinder(il); InstructionHandle ih; String pattern; // LoadInstruction, POP => (removed) // pattern = "LoadInstruction POP"; // changed to lower case - changing to all lower case although only the instruction with capital I // is creating a problem in the Turkish locale pattern = "loadinstruction pop"; for (Iterator iter = find.search(pattern); iter.hasNext();) { InstructionHandle[] match = (InstructionHandle[]) iter.next(); try { if (!match[0].hasTargeters() && !match[1].hasTargeters()) { il.delete(match[0], match[1]); } } catch (TargetLostException e) { // TODO: move target down into the list } } // ILOAD_N, ILOAD_N, SWAP, ISTORE_N => ILOAD_N // pattern = "ILOAD ILOAD SWAP ISTORE"; // changed to lower case - changing to all lower case although only the instruction with capital I // is creating a problem in the Turkish locale pattern = "iload iload swap istore"; for (Iterator iter = find.search(pattern); iter.hasNext();) { InstructionHandle[] match = (InstructionHandle[]) iter.next(); try { com.sun.org.apache.bcel.internal.generic.ILOAD iload1 = (com.sun.org.apache.bcel.internal.generic.ILOAD) match[0].getInstruction(); com.sun.org.apache.bcel.internal.generic.ILOAD iload2 = (com.sun.org.apache.bcel.internal.generic.ILOAD) match[1].getInstruction(); com.sun.org.apache.bcel.internal.generic.ISTORE istore = (com.sun.org.apache.bcel.internal.generic.ISTORE) match[3].getInstruction(); if (!match[1].hasTargeters() && !match[2].hasTargeters() && !match[3].hasTargeters() && iload1.getIndex() == iload2.getIndex() && iload2.getIndex() == istore.getIndex()) { il.delete(match[1], match[3]); } } catch (TargetLostException e) { // TODO: move target down into the list } } // LoadInstruction_N, LoadInstruction_M, SWAP => LoadInstruction_M, LoadInstruction_N // pattern = "LoadInstruction LoadInstruction SWAP"; // changed to lower case - changing to all lower case although only the instruction with capital I // is creating a problem in the Turkish locale pattern = "loadinstruction loadinstruction swap"; for (Iterator iter = find.search(pattern); iter.hasNext();) { InstructionHandle[] match = (InstructionHandle[])iter.next(); try { if (!match[0].hasTargeters() && !match[1].hasTargeters() && !match[2].hasTargeters()) { Instruction load_m = match[1].getInstruction(); il.insert(match[0], load_m); il.delete(match[1], match[2]); } } catch (TargetLostException e) { // TODO: move target down into the list } } // ALOAD_N ALOAD_N => ALOAD_N DUP // pattern = "ALOAD ALOAD"; // changed to lower case - changing to all lower case although only the instruction with capital I // is creating a problem in the Turkish locale pattern = "aload aload"; for (Iterator iter = find.search(pattern); iter.hasNext();) { InstructionHandle[] match = (InstructionHandle[])iter.next(); try { if (!match[1].hasTargeters()) { com.sun.org.apache.bcel.internal.generic.ALOAD aload1 = (com.sun.org.apache.bcel.internal.generic.ALOAD) match[0].getInstruction(); com.sun.org.apache.bcel.internal.generic.ALOAD aload2 = (com.sun.org.apache.bcel.internal.generic.ALOAD) match[1].getInstruction(); if (aload1.getIndex() == aload2.getIndex()) { il.insert(match[1], new DUP()); il.delete(match[1]); } } } catch (TargetLostException e) { // TODO: move target down into the list } } } public InstructionHandle getTemplateInstructionHandle(Template template) { return (InstructionHandle)_templateIHs.get(template); } /** * Auxiliary method to determine if a qname is an attribute. */ private static boolean isAttributeName(String qname) { final int col = qname.lastIndexOf(':') + 1; return (qname.charAt(col) == '@'); } /** * Auxiliary method to determine if a qname is a namespace * qualified "*". */ private static boolean isNamespaceName(String qname) { final int col = qname.lastIndexOf(':'); return (col > -1 && qname.charAt(qname.length()-1) == '*'); } }