/* * Copyright (c) 2004, 2007, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.security.jgss.krb5; import org.ietf.jgss.*; import sun.security.jgss.*; import java.security.GeneralSecurityException; import java.io.InputStream; import java.io.OutputStream; import java.io.IOException; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import sun.security.krb5.Confounder; import sun.security.krb5.KrbException; /** * This class represents the new format of GSS tokens, as specified in * draft-ietf-krb-wg-gssapi-cfx-07.txt, emitted by the GSSContext.wrap() * call. It is a MessageToken except that it also contains plaintext or * encrypted data at the end. A WrapToken has certain other rules that are * peculiar to it and different from a MICToken, which is another type of * MessageToken. All data in a WrapToken is prepended by a random counfounder * of 16 bytes. Thus, all application data is replaced by * (confounder || data || tokenHeader || checksum). * * @author Seema Malkani */ class WrapToken_v2 extends MessageToken_v2 { /** * The size of the random confounder used in a WrapToken. */ static final int CONFOUNDER_SIZE = 16; /* * A token may come in either in an InputStream or as a * byte[]. Store a reference to it in either case and process * it's data only later when getData() is called and * decryption/copying is needed to be done. Note that JCE can * decrypt both from a byte[] and from an InputStream. */ private boolean readTokenFromInputStream = true; private InputStream is = null; private byte[] tokenBytes = null; private int tokenOffset = 0; private int tokenLen = 0; /* * Application data may come from an InputStream or from a * byte[]. However, it will always be stored and processed as a * byte[] since * (a) the MessageDigest class only accepts a byte[] as input and * (b) It allows writing to an OuputStream via a CipherOutputStream. */ private byte[] dataBytes = null; private int dataOffset = 0; private int dataLen = 0; // the len of the token data: // (confounder || data || tokenHeader || checksum) private int dataSize = 0; // Accessed by CipherHelper byte[] confounder = null; private boolean privacy = false; private boolean initiator = true; /** * Constructs a WrapToken from token bytes obtained from the * peer. * @param context the mechanism context associated with this * token * @param tokenBytes the bytes of the token * @param tokenOffset the offset of the token * @param tokenLen the length of the token * @param prop the MessageProp into which characteristics of the * parsed token will be stored. * @throws GSSException if the token is defective */ public WrapToken_v2(Krb5Context context, byte[] tokenBytes, int tokenOffset, int tokenLen, MessageProp prop) throws GSSException { // Just parse the MessageToken part first super(Krb5Token.WRAP_ID_v2, context, tokenBytes, tokenOffset, tokenLen, prop); this.readTokenFromInputStream = false; // rotate token bytes as per RRC byte[] new_tokenBytes = new byte[tokenLen]; if (rotate_left(tokenBytes, tokenOffset, new_tokenBytes, tokenLen)) { this.tokenBytes = new_tokenBytes; this.tokenOffset = 0; } else { this.tokenBytes = tokenBytes; this.tokenOffset = tokenOffset; } // Will need the token bytes again when extracting data this.tokenLen = tokenLen; this.privacy = prop.getPrivacy(); dataSize = tokenLen - TOKEN_HEADER_SIZE; // save initiator this.initiator = context.isInitiator(); } /** * Constructs a WrapToken from token bytes read on the fly from * an InputStream. * @param context the mechanism context associated with this * token * @param is the InputStream containing the token bytes * @param prop the MessageProp into which characteristics of the * parsed token will be stored. * @throws GSSException if the token is defective or if there is * a problem reading from the InputStream */ public WrapToken_v2(Krb5Context context, InputStream is, MessageProp prop) throws GSSException { // Just parse the MessageToken part first super(Krb5Token.WRAP_ID_v2, context, is, prop); // Will need the token bytes again when extracting data this.is = is; this.privacy = prop.getPrivacy(); // get the token length try { this.tokenLen = is.available(); } catch (IOException e) { throw new GSSException(GSSException.DEFECTIVE_TOKEN, -1, getTokenName(getTokenId()) + ": " + e.getMessage()); } // data size dataSize = tokenLen - TOKEN_HEADER_SIZE; // save initiator this.initiator = context.isInitiator(); } /** * Obtains the application data that was transmitted in this * WrapToken. * @return a byte array containing the application data * @throws GSSException if an error occurs while decrypting any * cipher text and checking for validity */ public byte[] getData() throws GSSException { byte[] temp = new byte[dataSize]; int len = getData(temp, 0); // len obtained is after removing confounder, tokenHeader and HMAC byte[] retVal = new byte[len]; System.arraycopy(temp, 0, retVal, 0, retVal.length); return retVal; } /** * Obtains the application data that was transmitted in this * WrapToken, writing it into an application provided output * array. * @param dataBuf the output buffer into which the data must be * written * @param dataBufOffset the offset at which to write the data * @return the size of the data written * @throws GSSException if an error occurs while decrypting any * cipher text and checking for validity */ public int getData(byte[] dataBuf, int dataBufOffset) throws GSSException { if (readTokenFromInputStream) getDataFromStream(dataBuf, dataBufOffset); else getDataFromBuffer(dataBuf, dataBufOffset); int retVal = 0; if (privacy) { retVal = dataSize - confounder.length - TOKEN_HEADER_SIZE - cipherHelper.getChecksumLength(); } else { retVal = dataSize - cipherHelper.getChecksumLength(); } return retVal; } /** * Helper routine to obtain the application data transmitted in * this WrapToken. It is called if the WrapToken was constructed * with a byte array as input. * @param dataBuf the output buffer into which the data must be * written * @param dataBufOffset the offset at which to write the data * @throws GSSException if an error occurs while decrypting any * cipher text and checking for validity */ private void getDataFromBuffer(byte[] dataBuf, int dataBufOffset) throws GSSException { int dataPos = tokenOffset + TOKEN_HEADER_SIZE; int data_length = 0; if (dataPos + dataSize > tokenOffset + tokenLen) throw new GSSException(GSSException.DEFECTIVE_TOKEN, -1, "Insufficient data in " + getTokenName(getTokenId())); // debug("WrapToken cons: data is token is [" + // getHexBytes(tokenBytes, tokenOffset, tokenLen) + "]\n"); confounder = new byte[CONFOUNDER_SIZE]; // Do decryption if this token was privacy protected. if (privacy) { // decrypt data cipherHelper.decryptData(this, tokenBytes, dataPos, dataSize, dataBuf, dataBufOffset, getKeyUsage()); /* debug("\t\tDecrypted data is [" + getHexBytes(confounder) + " " + getHexBytes(dataBuf, dataBufOffset, dataSize - CONFOUNDER_SIZE) + "]\n"); */ data_length = dataSize - CONFOUNDER_SIZE - TOKEN_HEADER_SIZE - cipherHelper.getChecksumLength(); } else { // Token data is in cleartext debug("\t\tNo encryption was performed by peer.\n"); // data data_length = dataSize - cipherHelper.getChecksumLength(); System.arraycopy(tokenBytes, dataPos, dataBuf, dataBufOffset, data_length); // debug("\t\tData is: " + getHexBytes(dataBuf, data_length)); /* * Make sure checksum is not corrupt */ if (!verifySign(dataBuf, dataBufOffset, data_length)) { throw new GSSException(GSSException.BAD_MIC, -1, "Corrupt checksum in Wrap token"); } } } /** * Helper routine to obtain the application data transmitted in * this WrapToken. It is called if the WrapToken was constructed * with an Inputstream. * @param dataBuf the output buffer into which the data must be * written * @param dataBufOffset the offset at which to write the data * @throws GSSException if an error occurs while decrypting any * cipher text and checking for validity */ private void getDataFromStream(byte[] dataBuf, int dataBufOffset) throws GSSException { int data_length = 0; // Don't check the token length. Data will be read on demand from // the InputStream. // debug("WrapToken cons: data will be read from InputStream.\n"); confounder = new byte[CONFOUNDER_SIZE]; try { // Do decryption if this token was privacy protected. if (privacy) { cipherHelper.decryptData(this, is, dataSize, dataBuf, dataBufOffset, getKeyUsage()); /* debug("\t\tDecrypted data is [" + getHexBytes(confounder) + " " + getHexBytes(dataBuf, dataBufOffset, dataSize - CONFOUNDER_SIZE) + "]\n"); */ data_length = dataSize - CONFOUNDER_SIZE - TOKEN_HEADER_SIZE - cipherHelper.getChecksumLength(); } else { // Token data is in cleartext debug("\t\tNo encryption was performed by peer.\n"); readFully(is, confounder); // read the data data_length = dataSize - cipherHelper.getChecksumLength(); readFully(is, dataBuf, dataBufOffset, data_length); /* * Make sure checksum is not corrupt */ if (!verifySign(dataBuf, dataBufOffset, data_length)) { throw new GSSException(GSSException.BAD_MIC, -1, "Corrupt checksum in Wrap token"); } } } catch (IOException e) { throw new GSSException(GSSException.DEFECTIVE_TOKEN, -1, getTokenName(getTokenId()) + ": " + e.getMessage()); } } public WrapToken_v2(Krb5Context context, MessageProp prop, byte[] dataBytes, int dataOffset, int dataLen) throws GSSException { super(Krb5Token.WRAP_ID_v2, context); confounder = Confounder.bytes(CONFOUNDER_SIZE); dataSize = confounder.length + dataLen + TOKEN_HEADER_SIZE + cipherHelper.getChecksumLength(); this.dataBytes = dataBytes; this.dataOffset = dataOffset; this.dataLen = dataLen; // save initiator this.initiator = context.isInitiator(); // debug("\nWrapToken cons: data to wrap is [" + // getHexBytes(confounder) + " " + // getHexBytes(dataBytes, dataOffset, dataLen) + "]\n"); genSignAndSeqNumber(prop, dataBytes, dataOffset, dataLen); /* * If the application decides to ask for privacy when the context * did not negotiate for it, do not provide it. The peer might not * have support for it. The app will realize this with a call to * pop.getPrivacy() after wrap(). */ if (!context.getConfState()) prop.setPrivacy(false); privacy = prop.getPrivacy(); } public void encode(OutputStream os) throws IOException, GSSException { super.encode(os); // debug("\n\nWriting data: ["); if (!privacy) { // Wrap Tokens (without confidentiality) = // { 16 byte token_header | plaintext | 12-byte HMAC } // where HMAC is on { plaintext | token_header } // calculate checksum byte[] checksum = getChecksum(dataBytes, dataOffset, dataLen); // data // debug(" " + getHexBytes(dataBytes, dataOffset, dataLen)); os.write(dataBytes, dataOffset, dataLen); // write HMAC // debug(" " + getHexBytes(checksum, // cipherHelper.getChecksumLength())); os.write(checksum); } else { // Wrap Tokens (with confidentiality) = // { 16 byte token_header | // Encrypt(16-byte confounder | plaintext | token_header) | // 12-byte HMAC } cipherHelper.encryptData(this, confounder, getTokenHeader(), dataBytes, dataOffset, dataLen, getKeyUsage(), os); } // debug("]\n"); } public byte[] encode() throws IOException, GSSException { // XXX Fine tune this initial size ByteArrayOutputStream bos = new ByteArrayOutputStream(dataSize + 50); encode(bos); return bos.toByteArray(); } public int encode(byte[] outToken, int offset) throws IOException, GSSException { int retVal = 0; // Token header is small ByteArrayOutputStream bos = new ByteArrayOutputStream(); super.encode(bos); byte[] header = bos.toByteArray(); System.arraycopy(header, 0, outToken, offset, header.length); offset += header.length; // debug("WrapToken.encode: Writing data: ["); if (!privacy) { // Wrap Tokens (without confidentiality) = // { 16 byte token_header | plaintext | 12-byte HMAC } // where HMAC is on { plaintext | token_header } // calculate checksum byte[] checksum = getChecksum(dataBytes, dataOffset, dataLen); // data // debug(" " + getHexBytes(dataBytes, dataOffset, dataLen)); System.arraycopy(dataBytes, dataOffset, outToken, offset, dataLen); offset += dataLen; // write HMAC // debug(" " + getHexBytes(checksum, // cipherHelper.getChecksumLength())); System.arraycopy(checksum, 0, outToken, offset, cipherHelper.getChecksumLength()); retVal = header.length + dataLen + cipherHelper.getChecksumLength(); } else { // Wrap Tokens (with confidentiality) = // { 16 byte token_header | // Encrypt(16-byte confounder | plaintext | token_header) | // 12-byte HMAC } int cLen = cipherHelper.encryptData(this, confounder, getTokenHeader(), dataBytes, dataOffset, dataLen, outToken, offset, getKeyUsage()); retVal = header.length + cLen; // debug(getHexBytes(outToken, offset, dataSize)); } // debug("]\n"); // %%% assume that plaintext length == ciphertext len return retVal; } protected int getKrb5TokenSize() throws GSSException { return (getTokenSize() + dataSize); } // This implementation is way to conservative. And it certainly // doesn't return the maximum limit. static int getSizeLimit(int qop, boolean confReq, int maxTokenSize, CipherHelper ch) throws GSSException { return (GSSHeader.getMaxMechTokenSize(OID, maxTokenSize) - (getTokenSize(ch) + CONFOUNDER_SIZE) - 8 /* safety */); } }