package org.myrobotlab.openni; /* -*- mode: java; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* Part of the Processing project - http://processing.org Copyright (c) 2005-12 Ben Fry and Casey Reas This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * 4x4 matrix implementation. */ public final class PMatrix3D /* implements PMatrix3D , PConstants */ { public float m00, m01, m02, m03; public float m10, m11, m12, m13; public float m20, m21, m22, m23; public float m30, m31, m32, m33; // locally allocated version to avoid creating new memory protected PMatrix3D inverseCopy; static private final float abs(float a) { return (a < 0) ? -a : a; } static private final float cos(float angle) { return (float) Math.cos(angle); } static private final float max(float a, float b) { return (a > b) ? a : b; } static private final float sin(float angle) { return (float) Math.sin(angle); } static public final float sqrt(float a) { return (float) Math.sqrt(a); } public PMatrix3D() { reset(); } public PMatrix3D(float m00, float m01, float m02, float m10, float m11, float m12) { set(m00, m01, m02, 0, m10, m11, m12, 0, 0, 0, 1, 0, 0, 0, 0, 1); } public PMatrix3D(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33) { set(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33); } public PMatrix3D(PMatrix3D matrix) { set(matrix); } public void apply(float n00, float n01, float n02, float n10, float n11, float n12) { apply(n00, n01, 0, n02, n10, n11, 0, n12, 0, 0, 1, 0, 0, 0, 0, 1); } public void apply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) { float r00 = m00 * n00 + m01 * n10 + m02 * n20 + m03 * n30; float r01 = m00 * n01 + m01 * n11 + m02 * n21 + m03 * n31; float r02 = m00 * n02 + m01 * n12 + m02 * n22 + m03 * n32; float r03 = m00 * n03 + m01 * n13 + m02 * n23 + m03 * n33; float r10 = m10 * n00 + m11 * n10 + m12 * n20 + m13 * n30; float r11 = m10 * n01 + m11 * n11 + m12 * n21 + m13 * n31; float r12 = m10 * n02 + m11 * n12 + m12 * n22 + m13 * n32; float r13 = m10 * n03 + m11 * n13 + m12 * n23 + m13 * n33; float r20 = m20 * n00 + m21 * n10 + m22 * n20 + m23 * n30; float r21 = m20 * n01 + m21 * n11 + m22 * n21 + m23 * n31; float r22 = m20 * n02 + m21 * n12 + m22 * n22 + m23 * n32; float r23 = m20 * n03 + m21 * n13 + m22 * n23 + m23 * n33; float r30 = m30 * n00 + m31 * n10 + m32 * n20 + m33 * n30; float r31 = m30 * n01 + m31 * n11 + m32 * n21 + m33 * n31; float r32 = m30 * n02 + m31 * n12 + m32 * n22 + m33 * n32; float r33 = m30 * n03 + m31 * n13 + m32 * n23 + m33 * n33; m00 = r00; m01 = r01; m02 = r02; m03 = r03; m10 = r10; m11 = r11; m12 = r12; m13 = r13; m20 = r20; m21 = r21; m22 = r22; m23 = r23; m30 = r30; m31 = r31; m32 = r32; m33 = r33; } public void apply(PMatrix3D source) { apply(source.m00, source.m01, source.m02, source.m03, source.m10, source.m11, source.m12, source.m13, source.m20, source.m21, source.m22, source.m23, source.m30, source.m31, source.m32, source.m33); } // public void invTranslate(float tx, float ty) { // invTranslate(tx, ty, 0); // } /** * @return the determinant of the matrix */ public float determinant() { float f = m00 * ((m11 * m22 * m33 + m12 * m23 * m31 + m13 * m21 * m32) - m13 * m22 * m31 - m11 * m23 * m32 - m12 * m21 * m33); f -= m01 * ((m10 * m22 * m33 + m12 * m23 * m30 + m13 * m20 * m32) - m13 * m22 * m30 - m10 * m23 * m32 - m12 * m20 * m33); f += m02 * ((m10 * m21 * m33 + m11 * m23 * m30 + m13 * m20 * m31) - m13 * m21 * m30 - m10 * m23 * m31 - m11 * m20 * m33); f -= m03 * ((m10 * m21 * m32 + m11 * m22 * m30 + m12 * m20 * m31) - m12 * m21 * m30 - m10 * m22 * m31 - m11 * m20 * m32); return f; } /** * Calculate the determinant of a 3x3 matrix. * * @return result */ private float determinant3x3(float t00, float t01, float t02, float t10, float t11, float t12, float t20, float t21, float t22) { return (t00 * (t11 * t22 - t12 * t21) + t01 * (t12 * t20 - t10 * t22) + t02 * (t10 * t21 - t11 * t20)); } /** * Returns a copy of this PMatrix3D. */ public PMatrix3D get() { PMatrix3D outgoing = new PMatrix3D(); outgoing.set(this); return outgoing; } /** * Copies the matrix contents into a 16 entry float array. If target is null * (or not the correct size), a new array will be created. */ public float[] get(float[] target) { if ((target == null) || (target.length != 16)) { target = new float[16]; } target[0] = m00; target[1] = m01; target[2] = m02; target[3] = m03; target[4] = m10; target[5] = m11; target[6] = m12; target[7] = m13; target[8] = m20; target[9] = m21; target[10] = m22; target[11] = m23; target[12] = m30; target[13] = m31; target[14] = m32; target[15] = m33; return target; } protected boolean invApply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) { if (inverseCopy == null) { inverseCopy = new PMatrix3D(); } inverseCopy.set(n00, n01, n02, n03, n10, n11, n12, n13, n20, n21, n22, n23, n30, n31, n32, n33); if (!inverseCopy.invert()) { return false; } preApply(inverseCopy); return true; } /** * Invert this matrix. * * @return true if successful */ public boolean invert() { float determinant = determinant(); if (determinant == 0) { return false; } // first row float t00 = determinant3x3(m11, m12, m13, m21, m22, m23, m31, m32, m33); float t01 = -determinant3x3(m10, m12, m13, m20, m22, m23, m30, m32, m33); float t02 = determinant3x3(m10, m11, m13, m20, m21, m23, m30, m31, m33); float t03 = -determinant3x3(m10, m11, m12, m20, m21, m22, m30, m31, m32); // second row float t10 = -determinant3x3(m01, m02, m03, m21, m22, m23, m31, m32, m33); float t11 = determinant3x3(m00, m02, m03, m20, m22, m23, m30, m32, m33); float t12 = -determinant3x3(m00, m01, m03, m20, m21, m23, m30, m31, m33); float t13 = determinant3x3(m00, m01, m02, m20, m21, m22, m30, m31, m32); // third row float t20 = determinant3x3(m01, m02, m03, m11, m12, m13, m31, m32, m33); float t21 = -determinant3x3(m00, m02, m03, m10, m12, m13, m30, m32, m33); float t22 = determinant3x3(m00, m01, m03, m10, m11, m13, m30, m31, m33); float t23 = -determinant3x3(m00, m01, m02, m10, m11, m12, m30, m31, m32); // fourth row float t30 = -determinant3x3(m01, m02, m03, m11, m12, m13, m21, m22, m23); float t31 = determinant3x3(m00, m02, m03, m10, m12, m13, m20, m22, m23); float t32 = -determinant3x3(m00, m01, m03, m10, m11, m13, m20, m21, m23); float t33 = determinant3x3(m00, m01, m02, m10, m11, m12, m20, m21, m22); // transpose and divide by the determinant m00 = t00 / determinant; m01 = t10 / determinant; m02 = t20 / determinant; m03 = t30 / determinant; m10 = t01 / determinant; m11 = t11 / determinant; m12 = t21 / determinant; m13 = t31 / determinant; m20 = t02 / determinant; m21 = t12 / determinant; m22 = t22 / determinant; m23 = t32 / determinant; m30 = t03 / determinant; m31 = t13 / determinant; m32 = t23 / determinant; m33 = t33 / determinant; return true; } protected void invRotate(float angle, float v0, float v1, float v2) { // TODO should make sure this vector is normalized float c = cos(-angle); float s = sin(-angle); float t = 1.0f - c; preApply((t * v0 * v0) + c, (t * v0 * v1) - (s * v2), (t * v0 * v2) + (s * v1), 0, (t * v0 * v1) + (s * v2), (t * v1 * v1) + c, (t * v1 * v2) - (s * v0), 0, (t * v0 * v2) - (s * v1), (t * v1 * v2) + (s * v0), (t * v2 * v2) + c, 0, 0, 0, 0, 1); } protected void invRotateX(float angle) { float c = cos(-angle); float s = sin(-angle); preApply(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1); } protected void invRotateY(float angle) { float c = cos(-angle); float s = sin(-angle); preApply(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1); } protected void invRotateZ(float angle) { float c = cos(-angle); float s = sin(-angle); preApply(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } protected void invScale(float x, float y, float z) { preApply(1 / x, 0, 0, 0, 0, 1 / y, 0, 0, 0, 0, 1 / z, 0, 0, 0, 0, 1); } protected void invTranslate(float tx, float ty, float tz) { preApply(1, 0, 0, -tx, 0, 1, 0, -ty, 0, 0, 1, -tz, 0, 0, 0, 1); } /** * Multiply a three or four element vector against this matrix. If out is null * or not length 3 or 4, a new float array (length 3) will be returned. */ public float[] mult(float[] source, float[] target) { if (target == null || target.length < 3) { target = new float[3]; } if (source == target) { throw new RuntimeException("The source and target vectors used in " + "PMatrix3D.mult() cannot be identical."); } if (target.length == 3) { target[0] = m00 * source[0] + m01 * source[1] + m02 * source[2] + m03; target[1] = m10 * source[0] + m11 * source[1] + m12 * source[2] + m13; target[2] = m20 * source[0] + m21 * source[1] + m22 * source[2] + m23; // float w = m30*source[0] + m31*source[1] + m32*source[2] + m33; // if (w != 0 && w != 1) { // target[0] /= w; target[1] /= w; target[2] /= w; // } } else if (target.length > 3) { target[0] = m00 * source[0] + m01 * source[1] + m02 * source[2] + m03 * source[3]; target[1] = m10 * source[0] + m11 * source[1] + m12 * source[2] + m13 * source[3]; target[2] = m20 * source[0] + m21 * source[1] + m22 * source[2] + m23 * source[3]; target[3] = m30 * source[0] + m31 * source[1] + m32 * source[2] + m33 * source[3]; } return target; } public PVector mult(PVector source, PVector target) { if (target == null) { target = new PVector(); } target.set(m00 * source.x + m01 * source.y + m02 * source.z + m03, m10 * source.x + m11 * source.y + m12 * source.z + m13, m20 * source.x + m21 * source.y + m22 * source.z + m23); // float tw = m30*source.x + m31*source.y + m32*source.z + m33; // if (tw != 0 && tw != 1) { // target.div(tw); // } return target; } public float multW(float x, float y, float z) { return m30 * x + m31 * y + m32 * z + m33; } public float multW(float x, float y, float z, float w) { return m30 * x + m31 * y + m32 * z + m33 * w; } public float multX(float x, float y) { return m00 * x + m01 * y + m03; } public float multX(float x, float y, float z) { return m00 * x + m01 * y + m02 * z + m03; } // //////////////////////////////////////////////////////////// public float multX(float x, float y, float z, float w) { return m00 * x + m01 * y + m02 * z + m03 * w; } /* * public PVector cmult(PVector source, PVector target) { if (target == null) * { target = new PVector(); } target.x = m00*source.x + m10*source.y + * m20*source.z + m30; target.y = m01*source.x + m11*source.y + m21*source.z + * m31; target.z = m02*source.x + m12*source.y + m22*source.z + m32; float tw * = m03*source.x + m13*source.y + m23*source.z + m33; if (tw != 0 && tw != 1) * { target.div(tw); } return target; } */ public float multY(float x, float y) { return m10 * x + m11 * y + m13; } public float multY(float x, float y, float z) { return m10 * x + m11 * y + m12 * z + m13; } public float multY(float x, float y, float z, float w) { return m10 * x + m11 * y + m12 * z + m13 * w; } public float multZ(float x, float y, float z) { return m20 * x + m21 * y + m22 * z + m23; } public float multZ(float x, float y, float z, float w) { return m20 * x + m21 * y + m22 * z + m23 * w; } public void preApply(float n00, float n01, float n02, float n10, float n11, float n12) { preApply(n00, n01, 0, n02, n10, n11, 0, n12, 0, 0, 1, 0, 0, 0, 0, 1); } public void preApply(float n00, float n01, float n02, float n03, float n10, float n11, float n12, float n13, float n20, float n21, float n22, float n23, float n30, float n31, float n32, float n33) { float r00 = n00 * m00 + n01 * m10 + n02 * m20 + n03 * m30; float r01 = n00 * m01 + n01 * m11 + n02 * m21 + n03 * m31; float r02 = n00 * m02 + n01 * m12 + n02 * m22 + n03 * m32; float r03 = n00 * m03 + n01 * m13 + n02 * m23 + n03 * m33; float r10 = n10 * m00 + n11 * m10 + n12 * m20 + n13 * m30; float r11 = n10 * m01 + n11 * m11 + n12 * m21 + n13 * m31; float r12 = n10 * m02 + n11 * m12 + n12 * m22 + n13 * m32; float r13 = n10 * m03 + n11 * m13 + n12 * m23 + n13 * m33; float r20 = n20 * m00 + n21 * m10 + n22 * m20 + n23 * m30; float r21 = n20 * m01 + n21 * m11 + n22 * m21 + n23 * m31; float r22 = n20 * m02 + n21 * m12 + n22 * m22 + n23 * m32; float r23 = n20 * m03 + n21 * m13 + n22 * m23 + n23 * m33; float r30 = n30 * m00 + n31 * m10 + n32 * m20 + n33 * m30; float r31 = n30 * m01 + n31 * m11 + n32 * m21 + n33 * m31; float r32 = n30 * m02 + n31 * m12 + n32 * m22 + n33 * m32; float r33 = n30 * m03 + n31 * m13 + n32 * m23 + n33 * m33; m00 = r00; m01 = r01; m02 = r02; m03 = r03; m10 = r10; m11 = r11; m12 = r12; m13 = r13; m20 = r20; m21 = r21; m22 = r22; m23 = r23; m30 = r30; m31 = r31; m32 = r32; m33 = r33; } /** * Apply another matrix to the left of this one. */ public void preApply(PMatrix3D left) { preApply(left.m00, left.m01, left.m02, left.m03, left.m10, left.m11, left.m12, left.m13, left.m20, left.m21, left.m22, left.m23, left.m30, left.m31, left.m32, left.m33); } public void print() { /* * System.out.println(m00 + " " + m01 + " " + m02 + " " + m03 + "\n" + m10 + * " " + m11 + " " + m12 + " " + m13 + "\n" + m20 + " " + m21 + " " + m22 + * " " + m23 + "\n" + m30 + " " + m31 + " " + m32 + " " + m33 + "\n"); */ int big = (int) Math.abs(max(max(max(max(abs(m00), abs(m01)), max(abs(m02), abs(m03))), max(max(abs(m10), abs(m11)), max(abs(m12), abs(m13)))), max(max(max(abs(m20), abs(m21)), max(abs(m22), abs(m23))), max(max(abs(m30), abs(m31)), max(abs(m32), abs(m33)))))); int digits = 1; if (Float.isNaN(big) || Float.isInfinite(big)) { // avoid infinite loop digits = 5; } else { while ((big /= 10) != 0) digits++; // cheap log() } /* * System.out.println(PApplet.nfs(m00, digits, 4) + " " + PApplet.nfs(m01, * digits, 4) + " " + PApplet.nfs(m02, digits, 4) + " " + PApplet.nfs(m03, * digits, 4)); * * System.out.println(PApplet.nfs(m10, digits, 4) + " " + PApplet.nfs(m11, * digits, 4) + " " + PApplet.nfs(m12, digits, 4) + " " + PApplet.nfs(m13, * digits, 4)); * * System.out.println(PApplet.nfs(m20, digits, 4) + " " + PApplet.nfs(m21, * digits, 4) + " " + PApplet.nfs(m22, digits, 4) + " " + PApplet.nfs(m23, * digits, 4)); * * System.out.println(PApplet.nfs(m30, digits, 4) + " " + PApplet.nfs(m31, * digits, 4) + " " + PApplet.nfs(m32, digits, 4) + " " + PApplet.nfs(m33, * digits, 4)); */ System.out.println(digits); } public void reset() { set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } public void rotate(float angle) { rotateZ(angle); } public void rotate(float angle, float v0, float v1, float v2) { float norm2 = v0 * v0 + v1 * v1 + v2 * v2; if (norm2 < PConstants.EPSILON) { // The vector is zero, cannot apply rotation. return; } if (Math.abs(norm2 - 1) > PConstants.EPSILON) { // The rotation vector is not normalized. float norm = sqrt(norm2); v0 /= norm; v1 /= norm; v2 /= norm; } float c = cos(angle); float s = sin(angle); float t = 1.0f - c; apply((t * v0 * v0) + c, (t * v0 * v1) - (s * v2), (t * v0 * v2) + (s * v1), 0, (t * v0 * v1) + (s * v2), (t * v1 * v1) + c, (t * v1 * v2) - (s * v0), 0, (t * v0 * v2) - (s * v1), (t * v1 * v2) + (s * v0), (t * v2 * v2) + c, 0, 0, 0, 0, 1); } public void rotateX(float angle) { float c = cos(angle); float s = sin(angle); apply(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1); } public void rotateY(float angle) { float c = cos(angle); float s = sin(angle); apply(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1); } public void rotateZ(float angle) { float c = cos(angle); float s = sin(angle); apply(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } // //////////////////////////////////////////////////////////// // REVERSE VERSIONS OF MATRIX OPERATIONS // These functions should not be used, as they will be removed in the // future. public void scale(float s) { // apply(s, 0, 0, 0, 0, s, 0, 0, 0, 0, s, 0, 0, 0, 0, 1); scale(s, s, s); } public void scale(float sx, float sy) { // apply(sx, 0, 0, 0, 0, sy, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); scale(sx, sy, 1); } public void scale(float x, float y, float z) { // apply(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1); m00 *= x; m01 *= y; m02 *= z; m10 *= x; m11 *= y; m12 *= z; m20 *= x; m21 *= y; m22 *= z; m30 *= x; m31 *= y; m32 *= z; } public void set(float m00, float m01, float m02, float m10, float m11, float m12) { set(m00, m01, 0, m02, m10, m11, 0, m12, 0, 0, 1, 0, 0, 0, 0, 1); } public void set(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33) { this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03; this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13; this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23; this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33; } public void set(float[] source) { if (source.length == 6) { set(source[0], source[1], source[2], source[3], source[4], source[5]); } else if (source.length == 16) { m00 = source[0]; m01 = source[1]; m02 = source[2]; m03 = source[3]; m10 = source[4]; m11 = source[5]; m12 = source[6]; m13 = source[7]; m20 = source[8]; m21 = source[9]; m22 = source[10]; m23 = source[11]; m30 = source[12]; m31 = source[13]; m32 = source[14]; m33 = source[15]; } } public void set(PMatrix3D matrix) { PMatrix3D src = matrix; set(src.m00, src.m01, src.m02, src.m03, src.m10, src.m11, src.m12, src.m13, src.m20, src.m21, src.m22, src.m23, src.m30, src.m31, src.m32, src.m33); } /* * static public String[] nfs(int num[], int digits) { String formatted[] = * new String[num.length]; for (int i = 0; i < formatted.length; i++) { * formatted[i] = nfs(num[i], digits, 5); } return formatted; } * * * static public String[] nfs(float num[], int left, int right) { String * formatted[] = new String[num.length]; for (int i = 0; i < formatted.length; * i++) { formatted[i] = nfs(num[i], left, right); } return formatted; } * * static public String nfs(float num, int left, int right) { return (num < 0) * ? nf(num, left, right) : (' ' + nf(num, left, right)); } */ // //////////////////////////////////////////////////////////// public void shearX(float angle) { float t = (float) Math.tan(angle); apply(1, t, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } // //////////////////////////////////////////////////////////// public void shearY(float angle) { float t = (float) Math.tan(angle); apply(1, 0, 0, 0, t, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); } public void translate(float tx, float ty) { translate(tx, ty, 0); } public void translate(float tx, float ty, float tz) { m03 += tx * m00 + ty * m01 + tz * m02; m13 += tx * m10 + ty * m11 + tz * m12; m23 += tx * m20 + ty * m21 + tz * m22; m33 += tx * m30 + ty * m31 + tz * m32; } /** * Transpose this matrix. */ public void transpose() { float temp; temp = m01; m01 = m10; m10 = temp; temp = m02; m02 = m20; m20 = temp; temp = m03; m03 = m30; m30 = temp; temp = m12; m12 = m21; m21 = temp; temp = m13; m13 = m31; m31 = temp; temp = m23; m23 = m32; m32 = temp; } }