/* * ==================================================================== * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. * ==================================================================== * * This software consists of voluntary contributions made by many * individuals on behalf of the Apache Software Foundation. For more * information on the Apache Software Foundation, please see * <http://www.apache.org/>. * */ package org.tmatesoft.svn.core.internal.io.dav.http; import org.tmatesoft.svn.core.internal.util.SVNBase64; import java.io.UnsupportedEncodingException; import java.security.Key; import java.security.MessageDigest; import java.util.Arrays; import java.util.Locale; import javax.crypto.Cipher; import javax.crypto.spec.SecretKeySpec; /** * Provides an implementation for NTLMv1, NTLMv2, and NTLM2 Session forms of the NTLM * authentication protocol. * * @since 4.1 */ final class NTLMEngine implements INTLMEngine { // Flags we use; descriptions according to: // http://davenport.sourceforge.net/ntlm.html // and // http://msdn.microsoft.com/en-us/library/cc236650%28v=prot.20%29.aspx protected static final int FLAG_REQUEST_UNICODE_ENCODING = 0x00000001; // Unicode string encoding requested protected static final int FLAG_REQUEST_TARGET = 0x00000004; // Requests target field protected static final int FLAG_REQUEST_SIGN = 0x00000010; // Requests all messages have a signature attached, in NEGOTIATE message. protected static final int FLAG_REQUEST_SEAL = 0x00000020; // Request key exchange for message confidentiality in NEGOTIATE message. MUST be used in conjunction with 56BIT. protected static final int FLAG_REQUEST_LAN_MANAGER_KEY = 0x00000080; // Request Lan Manager key instead of user session key protected static final int FLAG_REQUEST_NTLMv1 = 0x00000200; // Request NTLMv1 security. MUST be set in NEGOTIATE and CHALLENGE both protected static final int FLAG_DOMAIN_PRESENT = 0x00001000; // Domain is present in message protected static final int FLAG_WORKSTATION_PRESENT = 0x00002000; // Workstation is present in message protected static final int FLAG_REQUEST_ALWAYS_SIGN = 0x00008000; // Requests a signature block on all messages. Overridden by REQUEST_SIGN and REQUEST_SEAL. protected static final int FLAG_REQUEST_NTLM2_SESSION = 0x00080000; // From server in challenge, requesting NTLM2 session security protected static final int FLAG_REQUEST_VERSION = 0x02000000; // Request protocol version protected static final int FLAG_TARGETINFO_PRESENT = 0x00800000; // From server in challenge message, indicating targetinfo is present protected static final int FLAG_REQUEST_128BIT_KEY_EXCH = 0x20000000; // Request explicit 128-bit key exchange protected static final int FLAG_REQUEST_EXPLICIT_KEY_EXCH = 0x40000000; // Request explicit key exchange protected static final int FLAG_REQUEST_56BIT_ENCRYPTION = 0x80000000; // Must be used in conjunction with SEAL /** Secure random generator */ private static final java.security.SecureRandom RND_GEN; static { java.security.SecureRandom rnd = null; try { rnd = java.security.SecureRandom.getInstance("SHA1PRNG"); } catch (final Exception ignore) { } RND_GEN = rnd; } /** Character encoding */ static final String DEFAULT_CHARSET = "ASCII"; /** The character set to use for encoding the credentials */ private String credentialCharset = DEFAULT_CHARSET; /** The signature string as bytes in the default encoding */ private static final byte[] SIGNATURE; static { byte[] bytesWithoutNull; try { bytesWithoutNull = "NTLMSSP".getBytes("ASCII"); } catch (UnsupportedEncodingException e) { bytesWithoutNull = new byte[] {'N', 'T', 'L', 'M', 'S', 'S', 'P'}; } SIGNATURE = new byte[bytesWithoutNull.length + 1]; System.arraycopy(bytesWithoutNull, 0, SIGNATURE, 0, bytesWithoutNull.length); SIGNATURE[bytesWithoutNull.length] = (byte) 0x00; } /** * Returns the response for the given message. * * @param message * the message that was received from the server. * @param username * the username to authenticate with. * @param password * the password to authenticate with. * @param host * The host. * @param domain * the NT domain to authenticate in. * @return The response. * @throws NTLMEngineException * If the messages cannot be retrieved. */ final String getResponseFor(final String message, final String username, final char[] password, final String host, final String domain) throws NTLMEngineException { final String response; if (message == null || message.trim().equals("")) { response = getType1Message(host, domain); } else { final Type2Message t2m = new Type2Message(message); response = getType3Message(username, password, host, domain, t2m.getChallenge(), t2m .getFlags(), t2m.getTarget(), t2m.getTargetInfo()); } return response; } /** * Creates the first message (type 1 message) in the NTLM authentication * sequence. This message includes the user name, domain and host for the * authentication session. * * @param host * the computer name of the host requesting authentication. * @param domain * The domain to authenticate with. * @return String the message to add to the HTTP request header. */ String getType1Message(final String host, final String domain) throws NTLMEngineException { return new Type1Message(domain, host).getResponse(); } /** * Creates the type 3 message using the given server nonce. The type 3 * message includes all the information for authentication, host, domain, * username and the result of encrypting the nonce sent by the server using * the user's password as the key. * * @param user * The user name. This should not include the domain name. * @param password * The password. * @param host * The host that is originating the authentication request. * @param domain * The domain to authenticate within. * @param nonce * the 8 byte array the server sent. * @return The type 3 message. * @throws NTLMEngineException * If {@link #RC4(byte[],byte[])} fails. */ String getType3Message(final String user, final char[] password, final String host, final String domain, final byte[] nonce, final int type2Flags, final String target, final byte[] targetInformation) throws NTLMEngineException { return new Type3Message(domain, host, user, password, nonce, type2Flags, target, targetInformation).getResponse(); } /** * @return Returns the credentialCharset. */ String getCredentialCharset() { return credentialCharset; } /** * @param credentialCharset * The credentialCharset to set. */ void setCredentialCharset(final String credentialCharset) { this.credentialCharset = credentialCharset; } /** Strip dot suffix from a name */ private static String stripDotSuffix(final String value) { if (value == null) { return null; } final int index = value.indexOf("."); if (index != -1) { return value.substring(0, index); } return value; } /** Convert host to standard form */ private static String convertHost(final String host) { return stripDotSuffix(host); } /** Convert domain to standard form */ private static String convertDomain(final String domain) { return stripDotSuffix(domain); } private static int readULong(final byte[] src, final int index) throws NTLMEngineException { if (src.length < index + 4) { throw new NTLMEngineException("NTLM authentication - buffer too small for DWORD"); } return (src[index] & 0xff) | ((src[index + 1] & 0xff) << 8) | ((src[index + 2] & 0xff) << 16) | ((src[index + 3] & 0xff) << 24); } private static int readUShort(final byte[] src, final int index) throws NTLMEngineException { if (src.length < index + 2) { throw new NTLMEngineException("NTLM authentication - buffer too small for WORD"); } return (src[index] & 0xff) | ((src[index + 1] & 0xff) << 8); } private static byte[] readSecurityBuffer(final byte[] src, final int index) throws NTLMEngineException { final int length = readUShort(src, index); final int offset = readULong(src, index + 4); if (src.length < offset + length) { throw new NTLMEngineException( "NTLM authentication - buffer too small for data item"); } final byte[] buffer = new byte[length]; System.arraycopy(src, offset, buffer, 0, length); return buffer; } /** Calculate a challenge block */ private static byte[] makeRandomChallenge() throws NTLMEngineException { if (RND_GEN == null) { throw new NTLMEngineException("Random generator not available"); } final byte[] rval = new byte[8]; synchronized (RND_GEN) { RND_GEN.nextBytes(rval); } return rval; } /** Calculate a 16-byte secondary key */ private static byte[] makeSecondaryKey() throws NTLMEngineException { if (RND_GEN == null) { throw new NTLMEngineException("Random generator not available"); } final byte[] rval = new byte[16]; synchronized (RND_GEN) { RND_GEN.nextBytes(rval); } return rval; } protected static class CipherGen { protected final String domain; protected final String user; protected final char[] password; protected final byte[] challenge; protected final String target; protected final byte[] targetInformation; // Information we can generate but may be passed in (for testing) protected byte[] clientChallenge; protected byte[] clientChallenge2; protected byte[] secondaryKey; protected byte[] timestamp; // Stuff we always generate protected byte[] lmHash = null; protected byte[] lmResponse = null; protected byte[] ntlmHash = null; protected byte[] ntlmResponse = null; protected byte[] ntlmv2Hash = null; protected byte[] lmv2Hash = null; protected byte[] lmv2Response = null; protected byte[] ntlmv2Blob = null; protected byte[] ntlmv2Response = null; protected byte[] ntlm2SessionResponse = null; protected byte[] lm2SessionResponse = null; protected byte[] lmUserSessionKey = null; protected byte[] ntlmUserSessionKey = null; protected byte[] ntlmv2UserSessionKey = null; protected byte[] ntlm2SessionResponseUserSessionKey = null; protected byte[] lanManagerSessionKey = null; public CipherGen(final String domain, final String user, final char[] password, final byte[] challenge, final String target, final byte[] targetInformation, final byte[] clientChallenge, final byte[] clientChallenge2, final byte[] secondaryKey, final byte[] timestamp) { this.domain = domain; this.target = target; this.user = user; this.password = password; this.challenge = challenge; this.targetInformation = targetInformation; this.clientChallenge = clientChallenge; this.clientChallenge2 = clientChallenge2; this.secondaryKey = secondaryKey; this.timestamp = timestamp; } public CipherGen(final String domain, final String user, final char[] password, final byte[] challenge, final String target, final byte[] targetInformation) { this(domain, user, password, challenge, target, targetInformation, null, null, null, null); } /** Calculate and return client challenge */ public byte[] getClientChallenge() throws NTLMEngineException { if (clientChallenge == null) { clientChallenge = makeRandomChallenge(); } return clientChallenge; } /** Calculate and return second client challenge */ public byte[] getClientChallenge2() throws NTLMEngineException { if (clientChallenge2 == null) { clientChallenge2 = makeRandomChallenge(); } return clientChallenge2; } /** Calculate and return random secondary key */ public byte[] getSecondaryKey() throws NTLMEngineException { if (secondaryKey == null) { secondaryKey = makeSecondaryKey(); } return secondaryKey; } /** Calculate and return the LMHash */ public byte[] getLMHash() throws NTLMEngineException { if (lmHash == null) { lmHash = lmHash(password); } return lmHash; } /** Calculate and return the LMResponse */ public byte[] getLMResponse() throws NTLMEngineException { if (lmResponse == null) { lmResponse = lmResponse(getLMHash(),challenge); } return lmResponse; } /** Calculate and return the NTLMHash */ public byte[] getNTLMHash() throws NTLMEngineException { if (ntlmHash == null) { ntlmHash = ntlmHash(password); } return ntlmHash; } /** Calculate and return the NTLMResponse */ public byte[] getNTLMResponse() throws NTLMEngineException { if (ntlmResponse == null) { ntlmResponse = lmResponse(getNTLMHash(),challenge); } return ntlmResponse; } /** Calculate the LMv2 hash */ public byte[] getLMv2Hash() throws NTLMEngineException { if (lmv2Hash == null) { lmv2Hash = lmv2Hash(domain, user, getNTLMHash()); } return lmv2Hash; } /** Calculate the NTLMv2 hash */ public byte[] getNTLMv2Hash() throws NTLMEngineException { if (ntlmv2Hash == null) { ntlmv2Hash = ntlmv2Hash(domain, user, getNTLMHash()); } return ntlmv2Hash; } /** Calculate a timestamp */ public byte[] getTimestamp() { if (timestamp == null) { long time = System.currentTimeMillis(); time += 11644473600000l; // milliseconds from January 1, 1601 -> epoch. time *= 10000; // tenths of a microsecond. // convert to little-endian byte array. timestamp = new byte[8]; for (int i = 0; i < 8; i++) { timestamp[i] = (byte) time; time >>>= 8; } } return timestamp; } /** Calculate the NTLMv2Blob */ public byte[] getNTLMv2Blob() throws NTLMEngineException { if (ntlmv2Blob == null) { ntlmv2Blob = createBlob(getClientChallenge2(), targetInformation, getTimestamp()); } return ntlmv2Blob; } /** Calculate the NTLMv2Response */ public byte[] getNTLMv2Response() throws NTLMEngineException { if (ntlmv2Response == null) { ntlmv2Response = lmv2Response(getNTLMv2Hash(),challenge,getNTLMv2Blob()); } return ntlmv2Response; } /** Calculate the LMv2Response */ public byte[] getLMv2Response() throws NTLMEngineException { if (lmv2Response == null) { lmv2Response = lmv2Response(getLMv2Hash(),challenge,getClientChallenge()); } return lmv2Response; } /** Get NTLM2SessionResponse */ public byte[] getNTLM2SessionResponse() throws NTLMEngineException { if (ntlm2SessionResponse == null) { ntlm2SessionResponse = ntlm2SessionResponse(getNTLMHash(),challenge,getClientChallenge()); } return ntlm2SessionResponse; } /** Calculate and return LM2 session response */ public byte[] getLM2SessionResponse() throws NTLMEngineException { if (lm2SessionResponse == null) { final byte[] clChallenge = getClientChallenge(); lm2SessionResponse = new byte[24]; System.arraycopy(clChallenge, 0, lm2SessionResponse, 0, clChallenge.length); Arrays.fill(lm2SessionResponse, clChallenge.length, lm2SessionResponse.length, (byte) 0x00); } return lm2SessionResponse; } /** Get LMUserSessionKey */ public byte[] getLMUserSessionKey() throws NTLMEngineException { if (lmUserSessionKey == null) { lmUserSessionKey = new byte[16]; System.arraycopy(getLMHash(), 0, lmUserSessionKey, 0, 8); Arrays.fill(lmUserSessionKey, 8, 16, (byte) 0x00); } return lmUserSessionKey; } /** Get NTLMUserSessionKey */ public byte[] getNTLMUserSessionKey() throws NTLMEngineException { if (ntlmUserSessionKey == null) { final MD4 md4 = new MD4(); md4.update(getNTLMHash()); ntlmUserSessionKey = md4.getOutput(); } return ntlmUserSessionKey; } /** GetNTLMv2UserSessionKey */ public byte[] getNTLMv2UserSessionKey() throws NTLMEngineException { if (ntlmv2UserSessionKey == null) { final byte[] ntlmv2hash = getNTLMv2Hash(); final byte[] truncatedResponse = new byte[16]; System.arraycopy(getNTLMv2Response(), 0, truncatedResponse, 0, 16); ntlmv2UserSessionKey = hmacMD5(truncatedResponse, ntlmv2hash); } return ntlmv2UserSessionKey; } /** Get NTLM2SessionResponseUserSessionKey */ public byte[] getNTLM2SessionResponseUserSessionKey() throws NTLMEngineException { if (ntlm2SessionResponseUserSessionKey == null) { final byte[] ntlm2SessionResponseNonce = getLM2SessionResponse(); final byte[] sessionNonce = new byte[challenge.length + ntlm2SessionResponseNonce.length]; System.arraycopy(challenge, 0, sessionNonce, 0, challenge.length); System.arraycopy(ntlm2SessionResponseNonce, 0, sessionNonce, challenge.length, ntlm2SessionResponseNonce.length); ntlm2SessionResponseUserSessionKey = hmacMD5(sessionNonce,getNTLMUserSessionKey()); } return ntlm2SessionResponseUserSessionKey; } /** Get LAN Manager session key */ public byte[] getLanManagerSessionKey() throws NTLMEngineException { if (lanManagerSessionKey == null) { try { final byte[] keyBytes = new byte[14]; System.arraycopy(getLMHash(), 0, keyBytes, 0, 8); Arrays.fill(keyBytes, 8, keyBytes.length, (byte)0xbd); final Key lowKey = createDESKey(keyBytes, 0); final Key highKey = createDESKey(keyBytes, 7); final byte[] truncatedResponse = new byte[8]; System.arraycopy(getLMResponse(), 0, truncatedResponse, 0, truncatedResponse.length); Cipher des = Cipher.getInstance("DES/ECB/NoPadding"); des.init(Cipher.ENCRYPT_MODE, lowKey); final byte[] lowPart = des.doFinal(truncatedResponse); des = Cipher.getInstance("DES/ECB/NoPadding"); des.init(Cipher.ENCRYPT_MODE, highKey); final byte[] highPart = des.doFinal(truncatedResponse); lanManagerSessionKey = new byte[16]; System.arraycopy(lowPart, 0, lanManagerSessionKey, 0, lowPart.length); System.arraycopy(highPart, 0, lanManagerSessionKey, lowPart.length, highPart.length); } catch (final Exception e) { throw new NTLMEngineException(e.getMessage(), e); } } return lanManagerSessionKey; } } /** Calculates HMAC-MD5 */ static byte[] hmacMD5(final byte[] value, final byte[] key) throws NTLMEngineException { final HMACMD5 hmacMD5 = new HMACMD5(key); hmacMD5.update(value); return hmacMD5.getOutput(); } /** Calculates RC4 */ static byte[] RC4(final byte[] value, final byte[] key) throws NTLMEngineException { try { final Cipher rc4 = Cipher.getInstance("RC4"); rc4.init(Cipher.ENCRYPT_MODE, new SecretKeySpec(key, "RC4")); return rc4.doFinal(value); } catch (final Exception e) { throw new NTLMEngineException(e.getMessage(), e); } } /** * Calculates the NTLM2 Session Response for the given challenge, using the * specified password and client challenge. * * @return The NTLM2 Session Response. This is placed in the NTLM response * field of the Type 3 message; the LM response field contains the * client challenge, null-padded to 24 bytes. */ static byte[] ntlm2SessionResponse(final byte[] ntlmHash, final byte[] challenge, final byte[] clientChallenge) throws NTLMEngineException { try { // Look up MD5 algorithm (was necessary on jdk 1.4.2) // This used to be needed, but java 1.5.0_07 includes the MD5 // algorithm (finally) // Class x = Class.forName("gnu.crypto.hash.MD5"); // Method updateMethod = x.getMethod("update",new // Class[]{byte[].class}); // Method digestMethod = x.getMethod("digest",new Class[0]); // Object mdInstance = x.newInstance(); // updateMethod.invoke(mdInstance,new Object[]{challenge}); // updateMethod.invoke(mdInstance,new Object[]{clientChallenge}); // byte[] digest = (byte[])digestMethod.invoke(mdInstance,new // Object[0]); final MessageDigest md5 = MessageDigest.getInstance("MD5"); md5.update(challenge); md5.update(clientChallenge); final byte[] digest = md5.digest(); final byte[] sessionHash = new byte[8]; System.arraycopy(digest, 0, sessionHash, 0, 8); return lmResponse(ntlmHash, sessionHash); } catch (final Exception e) { if (e instanceof NTLMEngineException) { throw (NTLMEngineException) e; } throw new NTLMEngineException(e.getMessage(), e); } } /** * Creates the LM Hash of the user's password. * * @param password * The password. * * @return The LM Hash of the given password, used in the calculation of the * LM Response. */ private static byte[] lmHash(final char[] password) throws NTLMEngineException { final char[] upperCasePassword = new char[password.length]; System.arraycopy(password, 0, upperCasePassword, 0, password.length); for (int i = 0; i < upperCasePassword.length; i++) { upperCasePassword[i] = Character.toUpperCase(password[i]); } final byte[] passwordBytes = HTTPAuthentication.getBytes(upperCasePassword, "US-ASCII"); try { final byte[] oemPassword = passwordBytes; final int length = Math.min(oemPassword.length, 14); final byte[] keyBytes = new byte[14]; System.arraycopy(oemPassword, 0, keyBytes, 0, length); final Key lowKey = createDESKey(keyBytes, 0); final Key highKey = createDESKey(keyBytes, 7); final byte[] magicConstant = "KGS!@#$%".getBytes("US-ASCII"); final Cipher des = Cipher.getInstance("DES/ECB/NoPadding"); des.init(Cipher.ENCRYPT_MODE, lowKey); final byte[] lowHash = des.doFinal(magicConstant); des.init(Cipher.ENCRYPT_MODE, highKey); final byte[] highHash = des.doFinal(magicConstant); final byte[] lmHash = new byte[16]; System.arraycopy(lowHash, 0, lmHash, 0, 8); System.arraycopy(highHash, 0, lmHash, 8, 8); return lmHash; } catch (final Exception e) { throw new NTLMEngineException(e.getMessage(), e); } finally { HTTPAuthentication.clear(passwordBytes); HTTPAuthentication.clear(upperCasePassword); } } /** * Creates the NTLM Hash of the user's password. * * @param password * The password. * * @return The NTLM Hash of the given password, used in the calculation of * the NTLM Response and the NTLMv2 and LMv2 Hashes. */ private static byte[] ntlmHash(final char[] password) throws NTLMEngineException { final byte[] unicodePassword = HTTPAuthentication.getBytes(password, "UnicodeLittleUnmarked"); final MD4 md4 = new MD4(); md4.update(unicodePassword); HTTPAuthentication.clear(unicodePassword); return md4.getOutput(); } /** * Creates the LMv2 Hash of the user's password. * * @return The LMv2 Hash, used in the calculation of the NTLMv2 and LMv2 * Responses. */ private static byte[] lmv2Hash(final String domain, final String user, final byte[] ntlmHash) throws NTLMEngineException { try { final HMACMD5 hmacMD5 = new HMACMD5(ntlmHash); // Upper case username, upper case domain! hmacMD5.update(user.toUpperCase(Locale.ENGLISH).getBytes("UnicodeLittleUnmarked")); if (domain != null) { hmacMD5.update(domain.toUpperCase(Locale.ENGLISH).getBytes("UnicodeLittleUnmarked")); } return hmacMD5.getOutput(); } catch (final UnsupportedEncodingException e) { throw new NTLMEngineException("Unicode not supported! " + e.getMessage(), e); } } /** * Creates the NTLMv2 Hash of the user's password. * * @return The NTLMv2 Hash, used in the calculation of the NTLMv2 and LMv2 * Responses. */ private static byte[] ntlmv2Hash(final String domain, final String user, final byte[] ntlmHash) throws NTLMEngineException { try { final HMACMD5 hmacMD5 = new HMACMD5(ntlmHash); // Upper case username, mixed case target!! hmacMD5.update(user.toUpperCase(Locale.ENGLISH).getBytes("UnicodeLittleUnmarked")); if (domain != null) { hmacMD5.update(domain.getBytes("UnicodeLittleUnmarked")); } return hmacMD5.getOutput(); } catch (final UnsupportedEncodingException e) { throw new NTLMEngineException("Unicode not supported! " + e.getMessage(), e); } } /** * Creates the LM Response from the given hash and Type 2 challenge. * * @param hash * The LM or NTLM Hash. * @param challenge * The server challenge from the Type 2 message. * * @return The response (either LM or NTLM, depending on the provided hash). */ private static byte[] lmResponse(final byte[] hash, final byte[] challenge) throws NTLMEngineException { try { final byte[] keyBytes = new byte[21]; System.arraycopy(hash, 0, keyBytes, 0, 16); final Key lowKey = createDESKey(keyBytes, 0); final Key middleKey = createDESKey(keyBytes, 7); final Key highKey = createDESKey(keyBytes, 14); final Cipher des = Cipher.getInstance("DES/ECB/NoPadding"); des.init(Cipher.ENCRYPT_MODE, lowKey); final byte[] lowResponse = des.doFinal(challenge); des.init(Cipher.ENCRYPT_MODE, middleKey); final byte[] middleResponse = des.doFinal(challenge); des.init(Cipher.ENCRYPT_MODE, highKey); final byte[] highResponse = des.doFinal(challenge); final byte[] lmResponse = new byte[24]; System.arraycopy(lowResponse, 0, lmResponse, 0, 8); System.arraycopy(middleResponse, 0, lmResponse, 8, 8); System.arraycopy(highResponse, 0, lmResponse, 16, 8); return lmResponse; } catch (final Exception e) { throw new NTLMEngineException(e.getMessage(), e); } } /** * Creates the LMv2 Response from the given hash, client data, and Type 2 * challenge. * * @param hash * The NTLMv2 Hash. * @param clientData * The client data (blob or client challenge). * @param challenge * The server challenge from the Type 2 message. * * @return The response (either NTLMv2 or LMv2, depending on the client * data). */ private static byte[] lmv2Response(final byte[] hash, final byte[] challenge, final byte[] clientData) throws NTLMEngineException { final HMACMD5 hmacMD5 = new HMACMD5(hash); hmacMD5.update(challenge); hmacMD5.update(clientData); final byte[] mac = hmacMD5.getOutput(); final byte[] lmv2Response = new byte[mac.length + clientData.length]; System.arraycopy(mac, 0, lmv2Response, 0, mac.length); System.arraycopy(clientData, 0, lmv2Response, mac.length, clientData.length); return lmv2Response; } /** * Creates the NTLMv2 blob from the given target information block and * client challenge. * * @param targetInformation * The target information block from the Type 2 message. * @param clientChallenge * The random 8-byte client challenge. * * @return The blob, used in the calculation of the NTLMv2 Response. */ private static byte[] createBlob(final byte[] clientChallenge, final byte[] targetInformation, final byte[] timestamp) { final byte[] blobSignature = new byte[] { (byte) 0x01, (byte) 0x01, (byte) 0x00, (byte) 0x00 }; final byte[] reserved = new byte[] { (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00 }; final byte[] unknown1 = new byte[] { (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00 }; final byte[] unknown2 = new byte[] { (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00 }; final byte[] blob = new byte[blobSignature.length + reserved.length + timestamp.length + 8 + unknown1.length + targetInformation.length + unknown2.length]; int offset = 0; System.arraycopy(blobSignature, 0, blob, offset, blobSignature.length); offset += blobSignature.length; System.arraycopy(reserved, 0, blob, offset, reserved.length); offset += reserved.length; System.arraycopy(timestamp, 0, blob, offset, timestamp.length); offset += timestamp.length; System.arraycopy(clientChallenge, 0, blob, offset, 8); offset += 8; System.arraycopy(unknown1, 0, blob, offset, unknown1.length); offset += unknown1.length; System.arraycopy(targetInformation, 0, blob, offset, targetInformation.length); offset += targetInformation.length; System.arraycopy(unknown2, 0, blob, offset, unknown2.length); offset += unknown2.length; return blob; } /** * Creates a DES encryption key from the given key material. * * @param bytes * A byte array containing the DES key material. * @param offset * The offset in the given byte array at which the 7-byte key * material starts. * * @return A DES encryption key created from the key material starting at * the specified offset in the given byte array. */ private static Key createDESKey(final byte[] bytes, final int offset) { final byte[] keyBytes = new byte[7]; System.arraycopy(bytes, offset, keyBytes, 0, 7); final byte[] material = new byte[8]; material[0] = keyBytes[0]; material[1] = (byte) (keyBytes[0] << 7 | (keyBytes[1] & 0xff) >>> 1); material[2] = (byte) (keyBytes[1] << 6 | (keyBytes[2] & 0xff) >>> 2); material[3] = (byte) (keyBytes[2] << 5 | (keyBytes[3] & 0xff) >>> 3); material[4] = (byte) (keyBytes[3] << 4 | (keyBytes[4] & 0xff) >>> 4); material[5] = (byte) (keyBytes[4] << 3 | (keyBytes[5] & 0xff) >>> 5); material[6] = (byte) (keyBytes[5] << 2 | (keyBytes[6] & 0xff) >>> 6); material[7] = (byte) (keyBytes[6] << 1); oddParity(material); return new SecretKeySpec(material, "DES"); } /** * Applies odd parity to the given byte array. * * @param bytes * The data whose parity bits are to be adjusted for odd parity. */ private static void oddParity(final byte[] bytes) { for (int i = 0; i < bytes.length; i++) { final byte b = bytes[i]; final boolean needsParity = (((b >>> 7) ^ (b >>> 6) ^ (b >>> 5) ^ (b >>> 4) ^ (b >>> 3) ^ (b >>> 2) ^ (b >>> 1)) & 0x01) == 0; if (needsParity) { bytes[i] |= (byte) 0x01; } else { bytes[i] &= (byte) 0xfe; } } } /** NTLM message generation, base class */ static class NTLMMessage { /** The current response */ private byte[] messageContents = null; /** The current output position */ private int currentOutputPosition = 0; /** Constructor to use when message contents are not yet known */ NTLMMessage() { } /** Constructor to use when message contents are known */ NTLMMessage(final String messageBody, final int expectedType) throws NTLMEngineException { final byte[] buffer = new byte[messageBody.length()]; int length = SVNBase64.base64ToByteArray(new StringBuffer(messageBody), buffer); messageContents = new byte[length]; System.arraycopy(buffer, 0, messageContents, 0, length); // Look for NTLM message if (messageContents.length < SIGNATURE.length) { throw new NTLMEngineException("NTLM message decoding error - packet too short"); } int i = 0; while (i < SIGNATURE.length) { if (messageContents[i] != SIGNATURE[i]) { throw new NTLMEngineException( "NTLM message expected - instead got unrecognized bytes"); } i++; } // Check to be sure there's a type 2 message indicator next final int type = readULong(SIGNATURE.length); if (type != expectedType) { throw new NTLMEngineException("NTLM type " + Integer.toString(expectedType) + " message expected - instead got type " + Integer.toString(type)); } currentOutputPosition = messageContents.length; } /** * Get the length of the signature and flags, so calculations can adjust * offsets accordingly. */ protected int getPreambleLength() { return SIGNATURE.length + 4; } /** Get the message length */ protected int getMessageLength() { return currentOutputPosition; } /** Read a byte from a position within the message buffer */ protected byte readByte(final int position) throws NTLMEngineException { if (messageContents.length < position + 1) { throw new NTLMEngineException("NTLM: Message too short"); } return messageContents[position]; } /** Read a bunch of bytes from a position in the message buffer */ protected void readBytes(final byte[] buffer, final int position) throws NTLMEngineException { if (messageContents.length < position + buffer.length) { throw new NTLMEngineException("NTLM: Message too short"); } System.arraycopy(messageContents, position, buffer, 0, buffer.length); } /** Read a ushort from a position within the message buffer */ protected int readUShort(final int position) throws NTLMEngineException { return NTLMEngine.readUShort(messageContents, position); } /** Read a ulong from a position within the message buffer */ protected int readULong(final int position) throws NTLMEngineException { return NTLMEngine.readULong(messageContents, position); } /** Read a security buffer from a position within the message buffer */ protected byte[] readSecurityBuffer(final int position) throws NTLMEngineException { return NTLMEngine.readSecurityBuffer(messageContents, position); } /** * Prepares the object to create a response of the given length. * * @param maxlength * the maximum length of the response to prepare, not * including the type and the signature (which this method * adds). */ protected void prepareResponse(final int maxlength, final int messageType) { messageContents = new byte[maxlength]; currentOutputPosition = 0; addBytes(SIGNATURE); addULong(messageType); } /** * Adds the given byte to the response. * * @param b * the byte to add. */ protected void addByte(final byte b) { messageContents[currentOutputPosition] = b; currentOutputPosition++; } /** * Adds the given bytes to the response. * * @param bytes * the bytes to add. */ protected void addBytes(final byte[] bytes) { if (bytes == null) { return; } for (final byte b : bytes) { messageContents[currentOutputPosition] = b; currentOutputPosition++; } } /** Adds a USHORT to the response */ protected void addUShort(final int value) { addByte((byte) (value & 0xff)); addByte((byte) (value >> 8 & 0xff)); } /** Adds a ULong to the response */ protected void addULong(final int value) { addByte((byte) (value & 0xff)); addByte((byte) (value >> 8 & 0xff)); addByte((byte) (value >> 16 & 0xff)); addByte((byte) (value >> 24 & 0xff)); } /** * Returns the response that has been generated after shrinking the * array if required and base64 encodes the response. * * @return The response as above. */ String getResponse() { final byte[] resp; if (messageContents.length > currentOutputPosition) { final byte[] tmp = new byte[currentOutputPosition]; System.arraycopy(messageContents, 0, tmp, 0, currentOutputPosition); resp = tmp; } else { resp = messageContents; } return SVNBase64.byteArrayToBase64(resp); } } /** Type 1 message assembly class */ static class Type1Message extends NTLMMessage { protected byte[] hostBytes; protected byte[] domainBytes; /** Constructor. Include the arguments the message will need */ Type1Message(final String domain, final String host) throws NTLMEngineException { super(); try { // Strip off domain name from the host! final String unqualifiedHost = convertHost(host); // Use only the base domain name! final String unqualifiedDomain = convertDomain(domain); hostBytes = unqualifiedHost != null? unqualifiedHost.getBytes("ASCII") : null; domainBytes = unqualifiedDomain != null ? unqualifiedDomain .toUpperCase(Locale.ENGLISH).getBytes("ASCII") : null; } catch (final UnsupportedEncodingException e) { throw new NTLMEngineException("Unicode unsupported: " + e.getMessage(), e); } } /** * Getting the response involves building the message before returning * it */ @Override String getResponse() { // Now, build the message. Calculate its length first, including // signature or type. final int finalLength = 32 + 8 /*+ hostBytes.length + domainBytes.length */; // Set up the response. This will initialize the signature, message // type, and flags. prepareResponse(finalLength, 1); // Flags. These are the complete set of flags we support. addULong( //FLAG_WORKSTATION_PRESENT | //FLAG_DOMAIN_PRESENT | // Required flags //FLAG_REQUEST_LAN_MANAGER_KEY | FLAG_REQUEST_NTLMv1 | FLAG_REQUEST_NTLM2_SESSION | // Protocol version request FLAG_REQUEST_VERSION | // Recommended privacy settings FLAG_REQUEST_ALWAYS_SIGN | //FLAG_REQUEST_SEAL | //FLAG_REQUEST_SIGN | // These must be set according to documentation, based on use of SEAL above FLAG_REQUEST_128BIT_KEY_EXCH | FLAG_REQUEST_56BIT_ENCRYPTION | //FLAG_REQUEST_EXPLICIT_KEY_EXCH | FLAG_REQUEST_UNICODE_ENCODING); // Domain length (two times). addUShort(/*domainBytes.length*/0); addUShort(/*domainBytes.length*/0); // Domain offset. addULong(/*hostBytes.length +*/ 32 + 8); // Host length (two times). addUShort(/*hostBytes.length*/0); addUShort(/*hostBytes.length*/0); // Host offset (always 32 + 8). addULong(32 + 8); // Version addUShort(0x0105); // Build addULong(2600); // NTLM revision addUShort(0x0f00); // Host (workstation) String. //addBytes(hostBytes); // Domain String. //addBytes(domainBytes); return super.getResponse(); } } /** Type 2 message class */ static class Type2Message extends NTLMMessage { protected byte[] challenge; protected String target; protected byte[] targetInfo; protected int flags; Type2Message(final String message) throws NTLMEngineException { super(message, 2); // Type 2 message is laid out as follows: // First 8 bytes: NTLMSSP[0] // Next 4 bytes: Ulong, value 2 // Next 8 bytes, starting at offset 12: target field (2 ushort lengths, 1 ulong offset) // Next 4 bytes, starting at offset 20: Flags, e.g. 0x22890235 // Next 8 bytes, starting at offset 24: Challenge // Next 8 bytes, starting at offset 32: ??? (8 bytes of zeros) // Next 8 bytes, starting at offset 40: targetinfo field (2 ushort lengths, 1 ulong offset) // Next 2 bytes, major/minor version number (e.g. 0x05 0x02) // Next 8 bytes, build number // Next 2 bytes, protocol version number (e.g. 0x00 0x0f) // Next, various text fields, and a ushort of value 0 at the end // Parse out the rest of the info we need from the message // The nonce is the 8 bytes starting from the byte in position 24. challenge = new byte[8]; readBytes(challenge, 24); flags = readULong(20); if ((flags & FLAG_REQUEST_UNICODE_ENCODING) == 0) { throw new NTLMEngineException( "NTLM type 2 message has flags that make no sense: " + Integer.toString(flags)); } // Do the target! target = null; // The TARGET_DESIRED flag is said to not have understood semantics // in Type2 messages, so use the length of the packet to decide // how to proceed instead if (getMessageLength() >= 12 + 8) { final byte[] bytes = readSecurityBuffer(12); if (bytes.length != 0) { try { target = new String(bytes, "UnicodeLittleUnmarked"); } catch (final UnsupportedEncodingException e) { throw new NTLMEngineException(e.getMessage(), e); } } } // Do the target info! targetInfo = null; // TARGET_DESIRED flag cannot be relied on, so use packet length if (getMessageLength() >= 40 + 8) { final byte[] bytes = readSecurityBuffer(40); if (bytes.length != 0) { targetInfo = bytes; } } } /** Retrieve the challenge */ byte[] getChallenge() { return challenge; } /** Retrieve the target */ String getTarget() { return target; } /** Retrieve the target info */ byte[] getTargetInfo() { return targetInfo; } /** Retrieve the response flags */ int getFlags() { return flags; } } /** Type 3 message assembly class */ static class Type3Message extends NTLMMessage { // Response flags from the type2 message protected int type2Flags; protected byte[] domainBytes; protected byte[] hostBytes; protected byte[] userBytes; protected byte[] lmResp; protected byte[] ntResp; protected byte[] sessionKey; /** Constructor. Pass the arguments we will need */ Type3Message(final String domain, final String host, final String user, final char[] password, final byte[] nonce, final int type2Flags, final String target, final byte[] targetInformation) throws NTLMEngineException { // Save the flags this.type2Flags = type2Flags; // Strip off domain name from the host! final String unqualifiedHost = convertHost(host); // Use only the base domain name! final String unqualifiedDomain = convertDomain(domain); // Create a cipher generator class. Use domain BEFORE it gets modified! final CipherGen gen = new CipherGen(unqualifiedDomain, user, password, nonce, target, targetInformation); // Use the new code to calculate the responses, including v2 if that // seems warranted. byte[] userSessionKey; try { // This conditional may not work on Windows Server 2008 R2 and above, where it has not yet // been tested if (((type2Flags & FLAG_TARGETINFO_PRESENT) != 0) && targetInformation != null && target != null) { // NTLMv2 ntResp = gen.getNTLMv2Response(); lmResp = gen.getLMv2Response(); if ((type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY) != 0) { userSessionKey = gen.getLanManagerSessionKey(); } else { userSessionKey = gen.getNTLMv2UserSessionKey(); } } else { // NTLMv1 if ((type2Flags & FLAG_REQUEST_NTLM2_SESSION) != 0) { // NTLM2 session stuff is requested ntResp = gen.getNTLM2SessionResponse(); lmResp = gen.getLM2SessionResponse(); if ((type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY) != 0) { userSessionKey = gen.getLanManagerSessionKey(); } else { userSessionKey = gen.getNTLM2SessionResponseUserSessionKey(); } } else { ntResp = gen.getNTLMResponse(); lmResp = gen.getLMResponse(); if ((type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY) != 0) { userSessionKey = gen.getLanManagerSessionKey(); } else { userSessionKey = gen.getNTLMUserSessionKey(); } } } } catch (final NTLMEngineException e) { // This likely means we couldn't find the MD4 hash algorithm - // fail back to just using LM ntResp = new byte[0]; lmResp = gen.getLMResponse(); if ((type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY) != 0) { userSessionKey = gen.getLanManagerSessionKey(); } else { userSessionKey = gen.getLMUserSessionKey(); } } if ((type2Flags & FLAG_REQUEST_SIGN) != 0) { if ((type2Flags & FLAG_REQUEST_EXPLICIT_KEY_EXCH) != 0) { sessionKey = RC4(gen.getSecondaryKey(), userSessionKey); } else { sessionKey = userSessionKey; } } else { sessionKey = null; } try { hostBytes = unqualifiedHost != null ? unqualifiedHost .getBytes("UnicodeLittleUnmarked") : null; domainBytes = unqualifiedDomain != null ? unqualifiedDomain .toUpperCase(Locale.ENGLISH).getBytes("UnicodeLittleUnmarked") : null; userBytes = user.getBytes("UnicodeLittleUnmarked"); } catch (final UnsupportedEncodingException e) { throw new NTLMEngineException("Unicode not supported: " + e.getMessage(), e); } } /** Assemble the response */ @Override String getResponse() { final int ntRespLen = ntResp.length; final int lmRespLen = lmResp.length; final int domainLen = domainBytes != null ? domainBytes.length : 0; final int hostLen = hostBytes != null ? hostBytes.length: 0; final int userLen = userBytes.length; final int sessionKeyLen; if (sessionKey != null) { sessionKeyLen = sessionKey.length; } else { sessionKeyLen = 0; } // Calculate the layout within the packet final int lmRespOffset = 72; // allocate space for the version final int ntRespOffset = lmRespOffset + lmRespLen; final int domainOffset = ntRespOffset + ntRespLen; final int userOffset = domainOffset + domainLen; final int hostOffset = userOffset + userLen; final int sessionKeyOffset = hostOffset + hostLen; final int finalLength = sessionKeyOffset + sessionKeyLen; // Start the response. Length includes signature and type prepareResponse(finalLength, 3); // LM Resp Length (twice) addUShort(lmRespLen); addUShort(lmRespLen); // LM Resp Offset addULong(lmRespOffset); // NT Resp Length (twice) addUShort(ntRespLen); addUShort(ntRespLen); // NT Resp Offset addULong(ntRespOffset); // Domain length (twice) addUShort(domainLen); addUShort(domainLen); // Domain offset. addULong(domainOffset); // User Length (twice) addUShort(userLen); addUShort(userLen); // User offset addULong(userOffset); // Host length (twice) addUShort(hostLen); addUShort(hostLen); // Host offset addULong(hostOffset); // Session key length (twice) addUShort(sessionKeyLen); addUShort(sessionKeyLen); // Session key offset addULong(sessionKeyOffset); // Flags. addULong( //FLAG_WORKSTATION_PRESENT | //FLAG_DOMAIN_PRESENT | // Required flags (type2Flags & FLAG_REQUEST_LAN_MANAGER_KEY) | (type2Flags & FLAG_REQUEST_NTLMv1) | (type2Flags & FLAG_REQUEST_NTLM2_SESSION) | // Protocol version request FLAG_REQUEST_VERSION | // Recommended privacy settings (type2Flags & FLAG_REQUEST_ALWAYS_SIGN) | (type2Flags & FLAG_REQUEST_SEAL) | (type2Flags & FLAG_REQUEST_SIGN) | // These must be set according to documentation, based on use of SEAL above (type2Flags & FLAG_REQUEST_128BIT_KEY_EXCH) | (type2Flags & FLAG_REQUEST_56BIT_ENCRYPTION) | (type2Flags & FLAG_REQUEST_EXPLICIT_KEY_EXCH) | (type2Flags & FLAG_TARGETINFO_PRESENT) | (type2Flags & FLAG_REQUEST_UNICODE_ENCODING) | (type2Flags & FLAG_REQUEST_TARGET) ); // Version addUShort(0x0105); // Build addULong(2600); // NTLM revision addUShort(0x0f00); // Add the actual data addBytes(lmResp); addBytes(ntResp); addBytes(domainBytes); addBytes(userBytes); addBytes(hostBytes); if (sessionKey != null) { addBytes(sessionKey); } return super.getResponse(); } } static void writeULong(final byte[] buffer, final int value, final int offset) { buffer[offset] = (byte) (value & 0xff); buffer[offset + 1] = (byte) (value >> 8 & 0xff); buffer[offset + 2] = (byte) (value >> 16 & 0xff); buffer[offset + 3] = (byte) (value >> 24 & 0xff); } static int F(final int x, final int y, final int z) { return ((x & y) | (~x & z)); } static int G(final int x, final int y, final int z) { return ((x & y) | (x & z) | (y & z)); } static int H(final int x, final int y, final int z) { return (x ^ y ^ z); } static int rotintlft(final int val, final int numbits) { return ((val << numbits) | (val >>> (32 - numbits))); } /** * Cryptography support - MD4. The following class was based loosely on the * RFC and on code found at http://www.cs.umd.edu/~harry/jotp/src/md.java. * Code correctness was verified by looking at MD4.java from the jcifs * library (http://jcifs.samba.org). It was massaged extensively to the * final form found here by Karl Wright (kwright@metacarta.com). */ static class MD4 { protected int A = 0x67452301; protected int B = 0xefcdab89; protected int C = 0x98badcfe; protected int D = 0x10325476; protected long count = 0L; protected byte[] dataBuffer = new byte[64]; MD4() { } void update(final byte[] input) { // We always deal with 512 bits at a time. Correspondingly, there is // a buffer 64 bytes long that we write data into until it gets // full. int curBufferPos = (int) (count & 63L); int inputIndex = 0; while (input.length - inputIndex + curBufferPos >= dataBuffer.length) { // We have enough data to do the next step. Do a partial copy // and a transform, updating inputIndex and curBufferPos // accordingly final int transferAmt = dataBuffer.length - curBufferPos; System.arraycopy(input, inputIndex, dataBuffer, curBufferPos, transferAmt); count += transferAmt; curBufferPos = 0; inputIndex += transferAmt; processBuffer(); } // If there's anything left, copy it into the buffer and leave it. // We know there's not enough left to process. if (inputIndex < input.length) { final int transferAmt = input.length - inputIndex; System.arraycopy(input, inputIndex, dataBuffer, curBufferPos, transferAmt); count += transferAmt; curBufferPos += transferAmt; } } byte[] getOutput() { // Feed pad/length data into engine. This must round out the input // to a multiple of 512 bits. final int bufferIndex = (int) (count & 63L); final int padLen = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); final byte[] postBytes = new byte[padLen + 8]; // Leading 0x80, specified amount of zero padding, then length in // bits. postBytes[0] = (byte) 0x80; // Fill out the last 8 bytes with the length for (int i = 0; i < 8; i++) { postBytes[padLen + i] = (byte) ((count * 8) >>> (8 * i)); } // Update the engine update(postBytes); // Calculate final result final byte[] result = new byte[16]; writeULong(result, A, 0); writeULong(result, B, 4); writeULong(result, C, 8); writeULong(result, D, 12); return result; } protected void processBuffer() { // Convert current buffer to 16 ulongs final int[] d = new int[16]; for (int i = 0; i < 16; i++) { d[i] = (dataBuffer[i * 4] & 0xff) + ((dataBuffer[i * 4 + 1] & 0xff) << 8) + ((dataBuffer[i * 4 + 2] & 0xff) << 16) + ((dataBuffer[i * 4 + 3] & 0xff) << 24); } // Do a round of processing final int AA = A; final int BB = B; final int CC = C; final int DD = D; round1(d); round2(d); round3(d); A += AA; B += BB; C += CC; D += DD; } protected void round1(final int[] d) { A = rotintlft((A + F(B, C, D) + d[0]), 3); D = rotintlft((D + F(A, B, C) + d[1]), 7); C = rotintlft((C + F(D, A, B) + d[2]), 11); B = rotintlft((B + F(C, D, A) + d[3]), 19); A = rotintlft((A + F(B, C, D) + d[4]), 3); D = rotintlft((D + F(A, B, C) + d[5]), 7); C = rotintlft((C + F(D, A, B) + d[6]), 11); B = rotintlft((B + F(C, D, A) + d[7]), 19); A = rotintlft((A + F(B, C, D) + d[8]), 3); D = rotintlft((D + F(A, B, C) + d[9]), 7); C = rotintlft((C + F(D, A, B) + d[10]), 11); B = rotintlft((B + F(C, D, A) + d[11]), 19); A = rotintlft((A + F(B, C, D) + d[12]), 3); D = rotintlft((D + F(A, B, C) + d[13]), 7); C = rotintlft((C + F(D, A, B) + d[14]), 11); B = rotintlft((B + F(C, D, A) + d[15]), 19); } protected void round2(final int[] d) { A = rotintlft((A + G(B, C, D) + d[0] + 0x5a827999), 3); D = rotintlft((D + G(A, B, C) + d[4] + 0x5a827999), 5); C = rotintlft((C + G(D, A, B) + d[8] + 0x5a827999), 9); B = rotintlft((B + G(C, D, A) + d[12] + 0x5a827999), 13); A = rotintlft((A + G(B, C, D) + d[1] + 0x5a827999), 3); D = rotintlft((D + G(A, B, C) + d[5] + 0x5a827999), 5); C = rotintlft((C + G(D, A, B) + d[9] + 0x5a827999), 9); B = rotintlft((B + G(C, D, A) + d[13] + 0x5a827999), 13); A = rotintlft((A + G(B, C, D) + d[2] + 0x5a827999), 3); D = rotintlft((D + G(A, B, C) + d[6] + 0x5a827999), 5); C = rotintlft((C + G(D, A, B) + d[10] + 0x5a827999), 9); B = rotintlft((B + G(C, D, A) + d[14] + 0x5a827999), 13); A = rotintlft((A + G(B, C, D) + d[3] + 0x5a827999), 3); D = rotintlft((D + G(A, B, C) + d[7] + 0x5a827999), 5); C = rotintlft((C + G(D, A, B) + d[11] + 0x5a827999), 9); B = rotintlft((B + G(C, D, A) + d[15] + 0x5a827999), 13); } protected void round3(final int[] d) { A = rotintlft((A + H(B, C, D) + d[0] + 0x6ed9eba1), 3); D = rotintlft((D + H(A, B, C) + d[8] + 0x6ed9eba1), 9); C = rotintlft((C + H(D, A, B) + d[4] + 0x6ed9eba1), 11); B = rotintlft((B + H(C, D, A) + d[12] + 0x6ed9eba1), 15); A = rotintlft((A + H(B, C, D) + d[2] + 0x6ed9eba1), 3); D = rotintlft((D + H(A, B, C) + d[10] + 0x6ed9eba1), 9); C = rotintlft((C + H(D, A, B) + d[6] + 0x6ed9eba1), 11); B = rotintlft((B + H(C, D, A) + d[14] + 0x6ed9eba1), 15); A = rotintlft((A + H(B, C, D) + d[1] + 0x6ed9eba1), 3); D = rotintlft((D + H(A, B, C) + d[9] + 0x6ed9eba1), 9); C = rotintlft((C + H(D, A, B) + d[5] + 0x6ed9eba1), 11); B = rotintlft((B + H(C, D, A) + d[13] + 0x6ed9eba1), 15); A = rotintlft((A + H(B, C, D) + d[3] + 0x6ed9eba1), 3); D = rotintlft((D + H(A, B, C) + d[11] + 0x6ed9eba1), 9); C = rotintlft((C + H(D, A, B) + d[7] + 0x6ed9eba1), 11); B = rotintlft((B + H(C, D, A) + d[15] + 0x6ed9eba1), 15); } } /** * Cryptography support - HMACMD5 - algorithmically based on various web * resources by Karl Wright */ static class HMACMD5 { protected byte[] ipad; protected byte[] opad; protected MessageDigest md5; HMACMD5(final byte[] input) throws NTLMEngineException { byte[] key = input; try { md5 = MessageDigest.getInstance("MD5"); } catch (final Exception ex) { // Umm, the algorithm doesn't exist - throw an // NTLMEngineException! throw new NTLMEngineException( "Error getting md5 message digest implementation: " + ex.getMessage(), ex); } // Initialize the pad buffers with the key ipad = new byte[64]; opad = new byte[64]; int keyLength = key.length; if (keyLength > 64) { // Use MD5 of the key instead, as described in RFC 2104 md5.update(key); key = md5.digest(); keyLength = key.length; } int i = 0; while (i < keyLength) { ipad[i] = (byte) (key[i] ^ (byte) 0x36); opad[i] = (byte) (key[i] ^ (byte) 0x5c); i++; } while (i < 64) { ipad[i] = (byte) 0x36; opad[i] = (byte) 0x5c; i++; } // Very important: update the digest with the ipad buffer md5.reset(); md5.update(ipad); } /** Grab the current digest. This is the "answer". */ byte[] getOutput() { final byte[] digest = md5.digest(); md5.update(opad); return md5.digest(digest); } /** Update by adding a complete array */ void update(final byte[] input) { md5.update(input); } /** Update the algorithm */ void update(final byte[] input, final int offset, final int length) { md5.update(input, offset, length); } } public String generateType1Msg( final String domain, final String workstation) throws NTLMEngineException { return getType1Message(workstation, domain); } public String generateType3Msg( final String username, final char[] password, final String domain, final String workstation, final String challenge) throws NTLMEngineException { final Type2Message t2m = new Type2Message(challenge); return getType3Message( username, password, workstation, domain, t2m.getChallenge(), t2m.getFlags(), t2m.getTarget(), t2m.getTargetInfo()); } }