/** * */ package test.dr.evomodel.operators; import java.io.IOException; import dr.evolution.tree.TreeUtils; import dr.inference.operators.*; import junit.framework.TestSuite; import junit.framework.Test; import dr.evolution.io.NewickImporter; import dr.evolution.io.Importer.ImportException; import dr.evolution.tree.FlexibleTree; import dr.evomodel.operators.ImportancePruneAndRegraft; import dr.evomodel.tree.TreeModel; import dr.inference.model.Parameter; /** * @author Sebastian Hoehna * */ public class ImportancePruneAndRegraftTestProblem extends OperatorAssert{ public static Test suite() { return new TestSuite(ImportancePruneAndRegraftTestProblem.class); } /** * Test method for {@link SimpleMCMCOperator#doOperation()}. * @throws ImportException * @throws IOException */ public void testDoOperation() throws IOException, ImportException { // probability of picking (A,B) node is 1/(2n-3) = 1/7 // probability of swapping with D is 1/2 // total = 1/14 //probability of picking {D} node is 1/(2n-3) = 1/7 //probability of picking {A,B} is 1/5 // total = 1/35 //total = 1/14 + 1/35 = 7/70 = 0.1 System.out.println("Test 1: Forward"); String treeMatch = "(((D,C),(A,B)),E);"; int count = 0; int reps = 1000000; for (int i = 0; i < reps; i++) { TreeModel treeModel = new TreeModel("treeModel", tree5); ImportancePruneAndRegraft operator = new ImportancePruneAndRegraft(treeModel, 1.0, 0); operator.doOperation(); String tree = TreeUtils.newickNoLengths(treeModel); if (tree.equals(treeMatch)) { count += 1; } } double p_1 = (double) count / (double) reps; System.out.println("Number of proposals:\t" + count); System.out.println("Number of tries:\t" + reps); System.out.println("Number of ratio:\t" + p_1); System.out.println("Number of expected ratio:\t" + 0.1); assertExpectation(0.1, p_1, reps); // lets see what the backward probability is for the hastings ratio // (((D:2.0,C:2.0):1.0,(A:1.0,B:1.0):2.0):1.0,E:4.0) -> ((((A,B),C),D),E) // probability of picking (A,B) node is 1/(2n-3) = 1/7 // probability of swapping with D is 1/3 // total = 1/21 //probability of picking {D} node is 1/(2n-2) = 1/7 //probability of picking {A,B} is 1/4 // total = 1/28 //total = 1/21 + 1/28 = 7/84 = 0.08333333 System.out.println("Test 2: Backward"); treeMatch = "((((A,B),C),D),E);"; NewickImporter importer = new NewickImporter("(((D:2.0,C:2.0):1.0,(A:1.0,B:1.0):2.0):1.0,E:4.0);"); FlexibleTree tree5_2 = (FlexibleTree) importer.importTree(null); count = 0; for (int i = 0; i < reps; i++) { TreeModel treeModel = new TreeModel("treeModel", tree5_2); ImportancePruneAndRegraft operator = new ImportancePruneAndRegraft(treeModel, 1.0, 1); operator.doOperation(); String tree = TreeUtils.newickNoLengths(treeModel); if (tree.equals(treeMatch)) { count += 1; } } double p_2 = (double) count / (double) reps; System.out.println("Number of proposals:\t" + count); System.out.println("Number of tries:\t" + reps); System.out.println("Number of ratio:\t" + p_2); System.out.println("Number of expected ratio:\t" + 0.0833333); assertExpectation(0.0833333, p_2, reps); } public OperatorSchedule getOperatorSchedule(TreeModel treeModel) { Parameter rootParameter = treeModel.createNodeHeightsParameter(true, false, false); Parameter internalHeights = treeModel.createNodeHeightsParameter(false, true, false); ImportancePruneAndRegraft operator = new ImportancePruneAndRegraft(treeModel, 1.0, 1); ScaleOperator scaleOperator = new ScaleOperator(rootParameter, 0.75, CoercionMode.COERCION_ON, 1.0); UniformOperator uniformOperator = new UniformOperator(internalHeights, 1.0); OperatorSchedule schedule = new SimpleOperatorSchedule(); schedule.addOperator(operator); schedule.addOperator(scaleOperator); schedule.addOperator(uniformOperator); return schedule; } }