/* * BifractionalDiffusionModel.java * * Copyright (c) 2002-2015 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.evomodel.continuous; import dr.inference.model.Parameter; import dr.inference.model.Variable; import dr.math.distributions.BifractionalDiffusionDensity; /** * @author Marc Suchard * * * Follows a bifractional diffusion model developed in: * Brockman D, Hufnagel L and Geisel T (2006) The scaling laws of human travel. Nature 439, 462 - 465 * * */ public class BifractionalDiffusionModel extends MultivariateDiffusionModel { public BifractionalDiffusionModel(Parameter alpha, Parameter beta) { super(); this.alpha = alpha; this.beta = beta; addVariable(alpha); addVariable(beta); densityKnown = false; } protected double calculateLogDensity(double[] start, double[] stop, double time) { // Compute finite-time transition probability // Equation (2) from Brockman, Hufnagel and Geisel (2006) // final double ratio = alpha.getParameterValue(0) / beta.getParameterValue(0); // final double r = distanceEuclidean(start, stop); // final double scaledTime = Math.pow(time,ratio); // return -ratio * Math.log(time) + logUniversalScalingFunction(r / scaledTime); double a = alpha.getParameterValue(0); double b = beta.getParameterValue(0); double r = distanceEuclidean(start, stop) * scalarDistance; // a = 2.0 //b = 1.0 //r = 0.3597864505508788 //t = 3.290985204423155E-5 // a = 2.0; //b = 1.0; //r = 0.3597864505508788; //time = 3.290985204423155E-5; // time = 1; // System.err.println("a = " + a); // System.err.println("b = " + b); // System.err.println("r = " + r); // System.err.println("t = " + time); if (!densityKnown) { setupDensity(); densityKnown = true; } // return BifractionalDiffusionDensity.logPdf(r, time, a, b); double pdf = bifractionalDensity.pdf(r, time * scalarTime); double logPdf = Math.log(pdf); if (Double.isNaN(logPdf)) { System.err.println("a = " + a); System.err.println("b = " + b); System.err.println("r = " + r); System.err.println("t = " + time * scalarTime); System.err.println("pdf = " + pdf); System.err.println("logPdf = " + logPdf); } return logPdf; } private void setupDensity() { final double a = alpha.getParameterValue(0); final double b = beta.getParameterValue(0); bifractionalDensity = new BifractionalDiffusionDensity(a, b); } protected void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) { super.handleVariableChangedEvent(variable, index, type); if (variable == alpha || variable == beta) { densityKnown = false; } } private double distanceEuclidean(double[] start, double[] stop) { final int dim = start.length; double total = 0; for(int i=0; i<dim; i++) { final double dX = stop[i] - start[i]; total += dX*dX; } return Math.sqrt(total); } // private double logUniversalScalingFunction(double x) { // return x - x; // } protected void calculatePrecisionInfo() { // Precompute normalizing constants if necessary } protected void restoreState() { super.restoreState(); densityKnown = false; } private Parameter alpha; private Parameter beta; private BifractionalDiffusionDensity bifractionalDensity; private boolean densityKnown; private double scalarDistance = 10E-3; private double scalarTime = 10E+3; }