/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.spatial3d.geom; /** * 3D rectangle, bounded on six sides by X,Y,Z limits, degenerate in Y * * @lucene.internal */ class XdYZSolid extends BaseXYZSolid { /** Min-X plane */ protected final SidedPlane minXPlane; /** Max-X plane */ protected final SidedPlane maxXPlane; /** Y plane */ protected final Plane yPlane; /** Min-Z plane */ protected final SidedPlane minZPlane; /** Max-Z plane */ protected final SidedPlane maxZPlane; /** These are the edge points of the shape, which are defined to be at least one point on * each surface area boundary. In the case of a solid, this includes points which represent * the intersection of XYZ bounding planes and the planet, as well as points representing * the intersection of single bounding planes with the planet itself. */ protected final GeoPoint[] edgePoints; /** Notable points for YPlane */ protected final GeoPoint[] notableYPoints; /** * Sole constructor * *@param planetModel is the planet model. *@param minX is the minimum X value. *@param maxX is the maximum X value. *@param Y is the Y value. *@param minZ is the minimum Z value. *@param maxZ is the maximum Z value. */ public XdYZSolid(final PlanetModel planetModel, final double minX, final double maxX, final double Y, final double minZ, final double maxZ) { super(planetModel); // Argument checking if (maxX - minX < Vector.MINIMUM_RESOLUTION) throw new IllegalArgumentException("X values in wrong order or identical"); if (maxZ - minZ < Vector.MINIMUM_RESOLUTION) throw new IllegalArgumentException("Z values in wrong order or identical"); final double worldMinY = planetModel.getMinimumYValue(); final double worldMaxY = planetModel.getMaximumYValue(); // Construct the planes minXPlane = new SidedPlane(maxX,0.0,0.0,xUnitVector,-minX); maxXPlane = new SidedPlane(minX,0.0,0.0,xUnitVector,-maxX); yPlane = new Plane(yUnitVector,-Y); minZPlane = new SidedPlane(0.0,0.0,maxZ,zUnitVector,-minZ); maxZPlane = new SidedPlane(0.0,0.0,minZ,zUnitVector,-maxZ); // We need at least one point on the planet surface for each manifestation of the shape. // There can be up to 2 (on opposite sides of the world). But we have to go through // 4 combinations of adjacent planes in order to find out if any have 2 intersection solution. // Typically, this requires 4 square root operations. final GeoPoint[] minXY = minXPlane.findIntersections(planetModel,yPlane,maxXPlane,minZPlane,maxZPlane); final GeoPoint[] maxXY = maxXPlane.findIntersections(planetModel,yPlane,minXPlane,minZPlane,maxZPlane); final GeoPoint[] YminZ = yPlane.findIntersections(planetModel,minZPlane,maxZPlane,minXPlane,maxXPlane); final GeoPoint[] YmaxZ = yPlane.findIntersections(planetModel,maxZPlane,minZPlane,minXPlane,maxXPlane); notableYPoints = glueTogether(minXY, maxXY, YminZ, YmaxZ); // Now, compute the edge points. // This is the trickiest part of setting up an XYZSolid. We've computed intersections already, so // we'll start there. We know that at most there will be two disconnected shapes on the planet surface. // But there's also a case where exactly one plane slices through the world, and none of the bounding plane // intersections do. Thus, if we don't find any of the edge intersection cases, we have to look for that last case. // We need to look at single-plane/world intersections. // We detect these by looking at the world model and noting its x, y, and z bounds. // The cases we are looking for are when the four corner points for any given // plane are all outside of the world, AND that plane intersects the world. // There are four corner points all told; we must evaluate these WRT the planet surface. final boolean minXYminZ = planetModel.pointOutside(minX, Y, minZ); final boolean minXYmaxZ = planetModel.pointOutside(minX, Y, maxZ); final boolean maxXYminZ = planetModel.pointOutside(maxX, Y, minZ); final boolean maxXYmaxZ = planetModel.pointOutside(maxX, Y, maxZ); final GeoPoint[] yEdges; if (Y - worldMinY >= -Vector.MINIMUM_RESOLUTION && Y - worldMaxY <= Vector.MINIMUM_RESOLUTION && minX < 0.0 && maxX > 0.0 && minZ < 0.0 && maxZ > 0.0 && minXYminZ && minXYmaxZ && maxXYminZ && maxXYmaxZ) { // Find any point on the minY plane that intersects the world // First construct a perpendicular plane that will allow us to find a sample point. // This plane is vertical and goes through the points (0,0,0) and (0,1,0) // Then use it to compute a sample point. final GeoPoint intPoint = yPlane.getSampleIntersectionPoint(planetModel, yVerticalPlane); if (intPoint != null) { yEdges = new GeoPoint[]{intPoint}; } else { yEdges = EMPTY_POINTS; } } else { yEdges = EMPTY_POINTS; } this.edgePoints = glueTogether(minXY, maxXY, YminZ, YmaxZ, yEdges); } @Override protected GeoPoint[] getEdgePoints() { return edgePoints; } @Override public boolean isWithin(final double x, final double y, final double z) { return minXPlane.isWithin(x, y, z) && maxXPlane.isWithin(x, y, z) && yPlane.evaluateIsZero(x, y, z) && minZPlane.isWithin(x, y, z) && maxZPlane.isWithin(x, y, z); } @Override public int getRelationship(final GeoShape path) { //System.err.println(this+" getrelationship with "+path); final int insideRectangle = isShapeInsideArea(path); if (insideRectangle == SOME_INSIDE) { //System.err.println(" some inside"); return OVERLAPS; } // Figure out if the entire XYZArea is contained by the shape. final int insideShape = isAreaInsideShape(path); if (insideShape == SOME_INSIDE) { return OVERLAPS; } if (insideRectangle == ALL_INSIDE && insideShape == ALL_INSIDE) { //System.err.println(" inside of each other"); return OVERLAPS; } if (path.intersects(yPlane, notableYPoints, minXPlane, maxXPlane, minZPlane, maxZPlane)) { //System.err.println(" edges intersect"); return OVERLAPS; } if (insideRectangle == ALL_INSIDE) { //System.err.println(" shape inside rectangle"); return WITHIN; } if (insideShape == ALL_INSIDE) { //System.err.println(" shape contains rectangle"); return CONTAINS; } //System.err.println(" disjoint"); return DISJOINT; } @Override public boolean equals(Object o) { if (!(o instanceof XdYZSolid)) return false; XdYZSolid other = (XdYZSolid) o; if (!super.equals(other)) { return false; } return other.minXPlane.equals(minXPlane) && other.maxXPlane.equals(maxXPlane) && other.yPlane.equals(yPlane) && other.minZPlane.equals(minZPlane) && other.maxZPlane.equals(maxZPlane); } @Override public int hashCode() { int result = super.hashCode(); result = 31 * result + minXPlane.hashCode(); result = 31 * result + maxXPlane.hashCode(); result = 31 * result + yPlane.hashCode(); result = 31 * result + minZPlane.hashCode(); result = 31 * result + maxZPlane.hashCode(); return result; } @Override public String toString() { return "XdYZSolid: {planetmodel="+planetModel+", minXplane="+minXPlane+", maxXplane="+maxXPlane+", yplane="+yPlane+", minZplane="+minZPlane+", maxZplane="+maxZPlane+"}"; } }