/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.spatial3d.geom; /** * This GeoBBox represents an area rectangle limited only in north latitude. * * @lucene.internal */ class GeoSouthLatitudeZone extends GeoBaseBBox { /** The top latitude of the zone */ protected final double topLat; /** The cosine of the top latitude of the zone */ protected final double cosTopLat; /** The top plane of the zone */ protected final SidedPlane topPlane; /** An interior point of the zone */ protected final GeoPoint interiorPoint; /** Notable points for the plane (none) */ protected final static GeoPoint[] planePoints = new GeoPoint[0]; /** A point on the top boundary */ protected final GeoPoint topBoundaryPoint; /** Edge points; a reference to the topBoundaryPoint */ protected final GeoPoint[] edgePoints; /** Constructor. *@param planetModel is the planet model. *@param topLat is the top latitude of the zone. */ public GeoSouthLatitudeZone(final PlanetModel planetModel, final double topLat) { super(planetModel); this.topLat = topLat; final double sinTopLat = Math.sin(topLat); this.cosTopLat = Math.cos(topLat); // Compute an interior point. Pick one whose lat is between top and bottom. final double middleLat = (topLat - Math.PI * 0.5) * 0.5; final double sinMiddleLat = Math.sin(middleLat); this.interiorPoint = new GeoPoint(planetModel, sinMiddleLat, 0.0, Math.sqrt(1.0 - sinMiddleLat * sinMiddleLat), 1.0); this.topBoundaryPoint = new GeoPoint(planetModel, sinTopLat, 0.0, Math.sqrt(1.0 - sinTopLat * sinTopLat), 1.0); this.topPlane = new SidedPlane(interiorPoint, planetModel, sinTopLat); this.edgePoints = new GeoPoint[]{topBoundaryPoint}; } @Override public GeoBBox expand(final double angle) { final double newTopLat = topLat + angle; final double newBottomLat = -Math.PI * 0.5; return GeoBBoxFactory.makeGeoBBox(planetModel, newTopLat, newBottomLat, -Math.PI, Math.PI); } @Override public boolean isWithin(final double x, final double y, final double z) { return topPlane.isWithin(x, y, z); } @Override public double getRadius() { // This is a bit tricky. I guess we should interpret this as meaning the angle of a circle that // would contain all the bounding box points, when starting in the "center". if (topLat > 0.0) return Math.PI; double maxCosLat = cosTopLat; return maxCosLat * Math.PI; } /** * Returns the center of a circle into which the area will be inscribed. * * @return the center. */ @Override public GeoPoint getCenter() { return interiorPoint; } @Override public GeoPoint[] getEdgePoints() { return edgePoints; } @Override public boolean intersects(final Plane p, final GeoPoint[] notablePoints, final Membership... bounds) { return p.intersects(planetModel, topPlane, notablePoints, planePoints, bounds); } @Override public void getBounds(Bounds bounds) { super.getBounds(bounds); bounds .addHorizontalPlane(planetModel, topLat, topPlane); } @Override public int getRelationship(final GeoShape path) { final int insideRectangle = isShapeInsideBBox(path); if (insideRectangle == SOME_INSIDE) return OVERLAPS; final boolean insideShape = path.isWithin(topBoundaryPoint); if (insideRectangle == ALL_INSIDE && insideShape) return OVERLAPS; // Second, the shortcut of seeing whether endpoints are in/out is not going to // work with no area endpoints. So we rely entirely on intersections. if (path.intersects(topPlane, planePoints)) return OVERLAPS; // There is another case for latitude zones only. This is when the boundaries of the shape all fit // within the zone, but the shape includes areas outside the zone crossing a pole. // In this case, the above "overlaps" check is insufficient. We also need to check a point on either boundary // whether it is within the shape. If both such points are within, then CONTAINS is the right answer. If // one such point is within, then OVERLAPS is the right answer. if (insideShape) return CONTAINS; if (insideRectangle == ALL_INSIDE) return WITHIN; return DISJOINT; } @Override protected double outsideDistance(final DistanceStyle distanceStyle, final double x, final double y, final double z) { return distanceStyle.computeDistance(planetModel, topPlane, x,y,z); } @Override public boolean equals(Object o) { if (!(o instanceof GeoSouthLatitudeZone)) return false; GeoSouthLatitudeZone other = (GeoSouthLatitudeZone) o; return super.equals(other) && other.topBoundaryPoint.equals(topBoundaryPoint); } @Override public int hashCode() { int result = super.hashCode(); result = 31 * result + topBoundaryPoint.hashCode(); return result; } @Override public String toString() { return "GeoSouthLatitudeZone: {planetmodel="+planetModel+", toplat=" + topLat + "(" + topLat * 180.0 / Math.PI + ")}"; } }