/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.spatial3d.geom; /** * We know about three kinds of planes. First kind: general plain through two points and origin * Second kind: horizontal plane at specified height. Third kind: vertical plane with specified x and y value, through origin. * * @lucene.experimental */ public class Plane extends Vector { /** An array with no points in it */ public final static GeoPoint[] NO_POINTS = new GeoPoint[0]; /** An array with no bounds in it */ public final static Membership[] NO_BOUNDS = new Membership[0]; /** A vertical plane normal to the Y axis */ public final static Plane normalYPlane = new Plane(0.0,1.0,0.0,0.0); /** A vertical plane normal to the X axis */ public final static Plane normalXPlane = new Plane(1.0,0.0,0.0,0.0); /** A vertical plane normal to the Z axis */ public final static Plane normalZPlane = new Plane(0.0,0.0,1.0,0.0); /** Ax + By + Cz + D = 0 */ public final double D; /** * Construct a plane with all four coefficients defined. *@param A is A *@param B is B *@param C is C *@param D is D */ public Plane(final double A, final double B, final double C, final double D) { super(A, B, C); this.D = D; } /** * Construct a plane through two points and origin. * * @param A is the first point (origin based). * @param BX is the second point X (origin based). * @param BY is the second point Y (origin based). * @param BZ is the second point Z (origin based). */ public Plane(final Vector A, final double BX, final double BY, final double BZ) { super(A, BX, BY, BZ); D = 0.0; } /** * Construct a plane through two points and origin. * * @param A is the first point (origin based). * @param B is the second point (origin based). */ public Plane(final Vector A, final Vector B) { super(A, B); D = 0.0; } /** * Construct a horizontal plane at a specified Z. * * @param planetModel is the planet model. * @param sinLat is the sin(latitude). */ public Plane(final PlanetModel planetModel, final double sinLat) { super(0.0, 0.0, 1.0); D = -sinLat * computeDesiredEllipsoidMagnitude(planetModel, sinLat); } /** * Construct a vertical plane through a specified * x, y and origin. * * @param x is the specified x value. * @param y is the specified y value. */ public Plane(final double x, final double y) { super(y, -x, 0.0); D = 0.0; } /** * Construct a plane with a specific vector, and D offset * from origin. * @param v is the normal vector. * @param D is the D offset from the origin. */ public Plane(final Vector v, final double D) { super(v.x, v.y, v.z); this.D = D; } /** Construct a plane that is parallel to the one provided, but which is just barely numerically * distinguishable from it, in the direction desired. * @param basePlane is the starting plane. * @param above is set to true if the desired plane is in the positive direction from the base plane, * or false in the negative direction. */ public Plane(final Plane basePlane, final boolean above) { this(basePlane.x, basePlane.y, basePlane.z, above?Math.nextUp(basePlane.D + MINIMUM_RESOLUTION):Math.nextDown(basePlane.D - MINIMUM_RESOLUTION)); } /** Construct the most accurate normalized plane through an x-y point and including the Z axis. * If none of the points can determine the plane, return null. * @param planePoints is a set of points to choose from. The best one for constructing the most precise plane is picked. * @return the plane */ public static Plane constructNormalizedZPlane(final Vector... planePoints) { // Pick the best one (with the greatest x-y distance) double bestDistance = 0.0; Vector bestPoint = null; for (final Vector point : planePoints) { final double pointDist = point.x * point.x + point.y * point.y; if (pointDist > bestDistance) { bestDistance = pointDist; bestPoint = point; } } return constructNormalizedZPlane(bestPoint.x, bestPoint.y); } /** Construct the most accurate normalized plane through an x-z point and including the Y axis. * If none of the points can determine the plane, return null. * @param planePoints is a set of points to choose from. The best one for constructing the most precise plane is picked. * @return the plane */ public static Plane constructNormalizedYPlane(final Vector... planePoints) { // Pick the best one (with the greatest x-z distance) double bestDistance = 0.0; Vector bestPoint = null; for (final Vector point : planePoints) { final double pointDist = point.x * point.x + point.z * point.z; if (pointDist > bestDistance) { bestDistance = pointDist; bestPoint = point; } } return constructNormalizedYPlane(bestPoint.x, bestPoint.z, 0.0); } /** Construct the most accurate normalized plane through an y-z point and including the X axis. * If none of the points can determine the plane, return null. * @param planePoints is a set of points to choose from. The best one for constructing the most precise plane is picked. * @return the plane */ public static Plane constructNormalizedXPlane(final Vector... planePoints) { // Pick the best one (with the greatest y-z distance) double bestDistance = 0.0; Vector bestPoint = null; for (final Vector point : planePoints) { final double pointDist = point.y * point.y + point.z * point.z; if (pointDist > bestDistance) { bestDistance = pointDist; bestPoint = point; } } return constructNormalizedXPlane(bestPoint.y, bestPoint.z, 0.0); } /** Construct a normalized plane through an x-y point and including the Z axis. * If the x-y point is at (0,0), return null. * @param x is the x value. * @param y is the y value. * @return a plane passing through the Z axis and (x,y,0). */ public static Plane constructNormalizedZPlane(final double x, final double y) { if (Math.abs(x) < MINIMUM_RESOLUTION && Math.abs(y) < MINIMUM_RESOLUTION) return null; final double denom = 1.0 / Math.sqrt(x*x + y*y); return new Plane(y * denom, -x * denom, 0.0, 0.0); } /** Construct a normalized plane through an x-z point and parallel to the Y axis. * If the x-z point is at (0,0), return null. * @param x is the x value. * @param z is the z value. * @param DValue is the offset from the origin for the plane. * @return a plane parallel to the Y axis and perpendicular to the x and z values given. */ public static Plane constructNormalizedYPlane(final double x, final double z, final double DValue) { if (Math.abs(x) < MINIMUM_RESOLUTION && Math.abs(z) < MINIMUM_RESOLUTION) return null; final double denom = 1.0 / Math.sqrt(x*x + z*z); return new Plane(z * denom, 0.0, -x * denom, DValue); } /** Construct a normalized plane through a y-z point and parallel to the X axis. * If the y-z point is at (0,0), return null. * @param y is the y value. * @param z is the z value. * @param DValue is the offset from the origin for the plane. * @return a plane parallel to the X axis and perpendicular to the y and z values given. */ public static Plane constructNormalizedXPlane(final double y, final double z, final double DValue) { if (Math.abs(y) < MINIMUM_RESOLUTION && Math.abs(z) < MINIMUM_RESOLUTION) return null; final double denom = 1.0 / Math.sqrt(y*y + z*z); return new Plane(0.0, z * denom, -y * denom, DValue); } /** * Evaluate the plane equation for a given point, as represented * by a vector. * * @param v is the vector. * @return the result of the evaluation. */ public double evaluate(final Vector v) { return dotProduct(v) + D; } /** * Evaluate the plane equation for a given point, as represented * by a vector. * @param x is the x value. * @param y is the y value. * @param z is the z value. * @return the result of the evaluation. */ public double evaluate(final double x, final double y, final double z) { return dotProduct(x, y, z) + D; } /** * Evaluate the plane equation for a given point, as represented * by a vector. * * @param v is the vector. * @return true if the result is on the plane. */ public boolean evaluateIsZero(final Vector v) { return Math.abs(evaluate(v)) < MINIMUM_RESOLUTION; } /** * Evaluate the plane equation for a given point, as represented * by a vector. * * @param x is the x value. * @param y is the y value. * @param z is the z value. * @return true if the result is on the plane. */ public boolean evaluateIsZero(final double x, final double y, final double z) { return Math.abs(evaluate(x, y, z)) < MINIMUM_RESOLUTION; } /** * Build a normalized plane, so that the vector is normalized. * * @return the normalized plane object, or null if the plane is indeterminate. */ public Plane normalize() { Vector normVect = super.normalize(); if (normVect == null) return null; return new Plane(normVect, this.D); } /** Compute arc distance from plane to a vector expressed with a {@link GeoPoint}. * @see #arcDistance(PlanetModel, double, double, double, Membership...) */ public double arcDistance(final PlanetModel planetModel, final GeoPoint v, final Membership... bounds) { return arcDistance(planetModel, v.x, v.y, v.z, bounds); } /** * Compute arc distance from plane to a vector. * @param planetModel is the planet model. * @param x is the x vector value. * @param y is the y vector value. * @param z is the z vector value. * @param bounds are the bounds which constrain the intersection point. * @return the arc distance. */ public double arcDistance(final PlanetModel planetModel, final double x, final double y, final double z, final Membership... bounds) { if (evaluateIsZero(x,y,z)) { if (meetsAllBounds(x,y,z, bounds)) return 0.0; return Double.POSITIVE_INFINITY; } // First, compute the perpendicular plane. final Plane perpPlane = new Plane(this.y * z - this.z * y, this.z * x - this.x * z, this.x * y - this.y * x, 0.0); // We need to compute the intersection of two planes on the geo surface: this one, and its perpendicular. // Then, we need to choose which of the two points we want to compute the distance to. We pick the // shorter distance always. final GeoPoint[] intersectionPoints = findIntersections(planetModel, perpPlane); // For each point, compute a linear distance, and take the minimum of them double minDistance = Double.POSITIVE_INFINITY; for (final GeoPoint intersectionPoint : intersectionPoints) { if (meetsAllBounds(intersectionPoint, bounds)) { final double theDistance = intersectionPoint.arcDistance(x,y,z); if (theDistance < minDistance) { minDistance = theDistance; } } } return minDistance; } /** * Compute normal distance from plane to a vector. * @param v is the vector. * @param bounds are the bounds which constrain the intersection point. * @return the normal distance. */ public double normalDistance(final Vector v, final Membership... bounds) { return normalDistance(v.x, v.y, v.z, bounds); } /** * Compute normal distance from plane to a vector. * @param x is the vector x. * @param y is the vector y. * @param z is the vector z. * @param bounds are the bounds which constrain the intersection point. * @return the normal distance. */ public double normalDistance(final double x, final double y, final double z, final Membership... bounds) { final double dist = evaluate(x,y,z); final double perpX = x - dist * this.x; final double perpY = y - dist * this.y; final double perpZ = z - dist * this.z; if (!meetsAllBounds(perpX, perpY, perpZ, bounds)) { return Double.POSITIVE_INFINITY; } return Math.abs(dist); } /** * Compute normal distance squared from plane to a vector. * @param v is the vector. * @param bounds are the bounds which constrain the intersection point. * @return the normal distance squared. */ public double normalDistanceSquared(final Vector v, final Membership... bounds) { return normalDistanceSquared(v.x, v.y, v.z, bounds); } /** * Compute normal distance squared from plane to a vector. * @param x is the vector x. * @param y is the vector y. * @param z is the vector z. * @param bounds are the bounds which constrain the intersection point. * @return the normal distance squared. */ public double normalDistanceSquared(final double x, final double y, final double z, final Membership... bounds) { final double normal = normalDistance(x,y,z,bounds); if (normal == Double.POSITIVE_INFINITY) return normal; return normal * normal; } /** * Compute linear distance from plane to a vector. This is defined * as the distance from the given point to the nearest intersection of * this plane with the planet surface. * @param planetModel is the planet model. * @param v is the point. * @param bounds are the bounds which constrain the intersection point. * @return the linear distance. */ public double linearDistance(final PlanetModel planetModel, final GeoPoint v, final Membership... bounds) { return linearDistance(planetModel, v.x, v.y, v.z, bounds); } /** * Compute linear distance from plane to a vector. This is defined * as the distance from the given point to the nearest intersection of * this plane with the planet surface. * @param planetModel is the planet model. * @param x is the vector x. * @param y is the vector y. * @param z is the vector z. * @param bounds are the bounds which constrain the intersection point. * @return the linear distance. */ public double linearDistance(final PlanetModel planetModel, final double x, final double y, final double z, final Membership... bounds) { if (evaluateIsZero(x,y,z)) { if (meetsAllBounds(x,y,z, bounds)) return 0.0; return Double.POSITIVE_INFINITY; } // First, compute the perpendicular plane. final Plane perpPlane = new Plane(this.y * z - this.z * y, this.z * x - this.x * z, this.x * y - this.y * x, 0.0); // We need to compute the intersection of two planes on the geo surface: this one, and its perpendicular. // Then, we need to choose which of the two points we want to compute the distance to. We pick the // shorter distance always. final GeoPoint[] intersectionPoints = findIntersections(planetModel, perpPlane); // For each point, compute a linear distance, and take the minimum of them double minDistance = Double.POSITIVE_INFINITY; for (final GeoPoint intersectionPoint : intersectionPoints) { if (meetsAllBounds(intersectionPoint, bounds)) { final double theDistance = intersectionPoint.linearDistance(x,y,z); if (theDistance < minDistance) { minDistance = theDistance; } } } return minDistance; } /** * Compute linear distance squared from plane to a vector. This is defined * as the distance from the given point to the nearest intersection of * this plane with the planet surface. * @param planetModel is the planet model. * @param v is the point. * @param bounds are the bounds which constrain the intersection point. * @return the linear distance squared. */ public double linearDistanceSquared(final PlanetModel planetModel, final GeoPoint v, final Membership... bounds) { return linearDistanceSquared(planetModel, v.x, v.y, v.z, bounds); } /** * Compute linear distance squared from plane to a vector. This is defined * as the distance from the given point to the nearest intersection of * this plane with the planet surface. * @param planetModel is the planet model. * @param x is the vector x. * @param y is the vector y. * @param z is the vector z. * @param bounds are the bounds which constrain the intersection point. * @return the linear distance squared. */ public double linearDistanceSquared(final PlanetModel planetModel, final double x, final double y, final double z, final Membership... bounds) { final double linearDistance = linearDistance(planetModel, x, y, z, bounds); return linearDistance * linearDistance; } /** * Find points on the boundary of the intersection of a plane and the unit sphere, * given a starting point, and ending point, and a list of proportions of the arc (e.g. 0.25, 0.5, 0.75). * The angle between the starting point and ending point is assumed to be less than pi. * @param start is the start point. * @param end is the end point. * @param proportions is an array of fractional proportions measured between start and end. * @return an array of points corresponding to the proportions passed in. */ public GeoPoint[] interpolate(final GeoPoint start, final GeoPoint end, final double[] proportions) { // Steps: // (1) Translate (x0,y0,z0) of endpoints into origin-centered place: // x1 = x0 + D*A // y1 = y0 + D*B // z1 = z0 + D*C // (2) Rotate counterclockwise in x-y: // ra = -atan2(B,A) // x2 = x1 cos ra - y1 sin ra // y2 = x1 sin ra + y1 cos ra // z2 = z1 // Faster: // cos ra = A/sqrt(A^2+B^2+C^2) // sin ra = -B/sqrt(A^2+B^2+C^2) // cos (-ra) = A/sqrt(A^2+B^2+C^2) // sin (-ra) = B/sqrt(A^2+B^2+C^2) // (3) Rotate clockwise in x-z: // ha = pi/2 - asin(C/sqrt(A^2+B^2+C^2)) // x3 = x2 cos ha - z2 sin ha // y3 = y2 // z3 = x2 sin ha + z2 cos ha // At this point, z3 should be zero. // Faster: // sin(ha) = cos(asin(C/sqrt(A^2+B^2+C^2))) = sqrt(1 - C^2/(A^2+B^2+C^2)) = sqrt(A^2+B^2)/sqrt(A^2+B^2+C^2) // cos(ha) = sin(asin(C/sqrt(A^2+B^2+C^2))) = C/sqrt(A^2+B^2+C^2) // (4) Compute interpolations by getting longitudes of original points // la = atan2(y3,x3) // (5) Rotate new points (xN0, yN0, zN0) counter-clockwise in x-z: // ha = -(pi - asin(C/sqrt(A^2+B^2+C^2))) // xN1 = xN0 cos ha - zN0 sin ha // yN1 = yN0 // zN1 = xN0 sin ha + zN0 cos ha // (6) Rotate new points clockwise in x-y: // ra = atan2(B,A) // xN2 = xN1 cos ra - yN1 sin ra // yN2 = xN1 sin ra + yN1 cos ra // zN2 = zN1 // (7) Translate new points: // xN3 = xN2 - D*A // yN3 = yN2 - D*B // zN3 = zN2 - D*C // First, calculate the angles and their sin/cos values double A = x; double B = y; double C = z; // Translation amounts final double transX = -D * A; final double transY = -D * B; final double transZ = -D * C; double cosRA; double sinRA; double cosHA; double sinHA; double magnitude = magnitude(); if (magnitude >= MINIMUM_RESOLUTION) { final double denom = 1.0 / magnitude; A *= denom; B *= denom; C *= denom; // cos ra = A/sqrt(A^2+B^2+C^2) // sin ra = -B/sqrt(A^2+B^2+C^2) // cos (-ra) = A/sqrt(A^2+B^2+C^2) // sin (-ra) = B/sqrt(A^2+B^2+C^2) final double xyMagnitude = Math.sqrt(A * A + B * B); if (xyMagnitude >= MINIMUM_RESOLUTION) { final double xyDenom = 1.0 / xyMagnitude; cosRA = A * xyDenom; sinRA = -B * xyDenom; } else { cosRA = 1.0; sinRA = 0.0; } // sin(ha) = cos(asin(C/sqrt(A^2+B^2+C^2))) = sqrt(1 - C^2/(A^2+B^2+C^2)) = sqrt(A^2+B^2)/sqrt(A^2+B^2+C^2) // cos(ha) = sin(asin(C/sqrt(A^2+B^2+C^2))) = C/sqrt(A^2+B^2+C^2) sinHA = xyMagnitude; cosHA = C; } else { cosRA = 1.0; sinRA = 0.0; cosHA = 1.0; sinHA = 0.0; } // Forward-translate the start and end points final Vector modifiedStart = modify(start, transX, transY, transZ, sinRA, cosRA, sinHA, cosHA); final Vector modifiedEnd = modify(end, transX, transY, transZ, sinRA, cosRA, sinHA, cosHA); if (Math.abs(modifiedStart.z) >= MINIMUM_RESOLUTION) throw new IllegalArgumentException("Start point was not on plane: " + modifiedStart.z); if (Math.abs(modifiedEnd.z) >= MINIMUM_RESOLUTION) throw new IllegalArgumentException("End point was not on plane: " + modifiedEnd.z); // Compute the angular distance between start and end point final double startAngle = Math.atan2(modifiedStart.y, modifiedStart.x); final double endAngle = Math.atan2(modifiedEnd.y, modifiedEnd.x); final double startMagnitude = Math.sqrt(modifiedStart.x * modifiedStart.x + modifiedStart.y * modifiedStart.y); double delta; double newEndAngle = endAngle; while (newEndAngle < startAngle) { newEndAngle += Math.PI * 2.0; } if (newEndAngle - startAngle <= Math.PI) { delta = newEndAngle - startAngle; } else { double newStartAngle = startAngle; while (newStartAngle < endAngle) { newStartAngle += Math.PI * 2.0; } delta = newStartAngle - endAngle; } final GeoPoint[] returnValues = new GeoPoint[proportions.length]; for (int i = 0; i < returnValues.length; i++) { final double newAngle = startAngle + proportions[i] * delta; final double sinNewAngle = Math.sin(newAngle); final double cosNewAngle = Math.cos(newAngle); final Vector newVector = new Vector(cosNewAngle * startMagnitude, sinNewAngle * startMagnitude, 0.0); returnValues[i] = reverseModify(newVector, transX, transY, transZ, sinRA, cosRA, sinHA, cosHA); } return returnValues; } /** * Modify a point to produce a vector in translated/rotated space. * @param start is the start point. * @param transX is the translation x value. * @param transY is the translation y value. * @param transZ is the translation z value. * @param sinRA is the sine of the ascension angle. * @param cosRA is the cosine of the ascension angle. * @param sinHA is the sine of the height angle. * @param cosHA is the cosine of the height angle. * @return the modified point. */ protected static Vector modify(final GeoPoint start, final double transX, final double transY, final double transZ, final double sinRA, final double cosRA, final double sinHA, final double cosHA) { return start.translate(transX, transY, transZ).rotateXY(sinRA, cosRA).rotateXZ(sinHA, cosHA); } /** * Reverse modify a point to produce a GeoPoint in normal space. * @param point is the translated point. * @param transX is the translation x value. * @param transY is the translation y value. * @param transZ is the translation z value. * @param sinRA is the sine of the ascension angle. * @param cosRA is the cosine of the ascension angle. * @param sinHA is the sine of the height angle. * @param cosHA is the cosine of the height angle. * @return the original point. */ protected static GeoPoint reverseModify(final Vector point, final double transX, final double transY, final double transZ, final double sinRA, final double cosRA, final double sinHA, final double cosHA) { final Vector result = point.rotateXZ(-sinHA, cosHA).rotateXY(-sinRA, cosRA).translate(-transX, -transY, -transZ); return new GeoPoint(result.x, result.y, result.z); } /** * Find the intersection points between two planes, given a set of bounds. * @param planetModel is the planet model. * @param q is the plane to intersect with. * @param bounds are the bounds to consider to determine legal intersection points. * @return the set of legal intersection points, or null if the planes are numerically identical. */ public GeoPoint[] findIntersections(final PlanetModel planetModel, final Plane q, final Membership... bounds) { if (isNumericallyIdentical(q)) { return null; } return findIntersections(planetModel, q, bounds, NO_BOUNDS); } /** * Find the points between two planes, where one plane crosses the other, given a set of bounds. * Crossing is not just intersection; the planes cannot touch at just one point on the ellipsoid, * but must cross at two. * * @param planetModel is the planet model. * @param q is the plane to intersect with. * @param bounds are the bounds to consider to determine legal intersection points. * @return the set of legal crossing points, or null if the planes are numerically identical. */ public GeoPoint[] findCrossings(final PlanetModel planetModel, final Plane q, final Membership... bounds) { if (isNumericallyIdentical(q)) { return null; } return findCrossings(planetModel, q, bounds, NO_BOUNDS); } /** * Find the intersection points between two planes, given a set of bounds. * * @param planetModel is the planet model to use in finding points. * @param q is the plane to intersect with. * @param bounds is the set of bounds. * @param moreBounds is another set of bounds. * @return the intersection point(s) on the unit sphere, if there are any. */ protected GeoPoint[] findIntersections(final PlanetModel planetModel, final Plane q, final Membership[] bounds, final Membership[] moreBounds) { //System.err.println("Looking for intersection between plane "+this+" and plane "+q+" within bounds"); // Unnormalized, unchecked... final double lineVectorX = y * q.z - z * q.y; final double lineVectorY = z * q.x - x * q.z; final double lineVectorZ = x * q.y - y * q.x; if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) { // Degenerate case: parallel planes //System.err.println(" planes are parallel - no intersection"); return NO_POINTS; } // The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z. // We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes. // To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations // simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are: // 0.7 x + 0.3 y + 0.1 z + 0.0 = 0 // and // 0.9 x - 0.1 y + 0.2 z + 4.0 = 0 // Then we'd pick z = 0, so the equations to solve for x and y would be: // 0.7 x + 0.3y = 0.0 // 0.9 x - 0.1y = -4.0 // ... which can readily be solved using standard linear algebra. Generally: // Q0 x + R0 y = S0 // Q1 x + R1 y = S1 // ... can be solved by Cramer's rule: // x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1) // y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1) // ... where det( a b / c d ) = ad - bc, so: // x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1) // y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1) double x0; double y0; double z0; // We try to maximize the determinant in the denominator final double denomYZ = this.y * q.z - this.z * q.y; final double denomXZ = this.x * q.z - this.z * q.x; final double denomXY = this.x * q.y - this.y * q.x; if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) { // X is the biggest, so our point will have x0 = 0.0 if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return NO_POINTS; } final double denom = 1.0 / denomYZ; x0 = 0.0; y0 = (-this.D * q.z - this.z * -q.D) * denom; z0 = (this.y * -q.D + this.D * q.y) * denom; } else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) { // Y is the biggest, so y0 = 0.0 if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return NO_POINTS; } final double denom = 1.0 / denomXZ; x0 = (-this.D * q.z - this.z * -q.D) * denom; y0 = 0.0; z0 = (this.x * -q.D + this.D * q.x) * denom; } else { // Z is the biggest, so Z0 = 0.0 if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return NO_POINTS; } final double denom = 1.0 / denomXY; x0 = (-this.D * q.y - this.y * -q.D) * denom; y0 = (this.x * -q.D + this.D * q.x) * denom; z0 = 0.0; } // Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which // will yield zero, one, or two points. // The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2 // 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2 // A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0 // [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0 // Use the quadratic formula to determine t values and candidate point(s) final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared + lineVectorY * lineVectorY * planetModel.inverseAbSquared + lineVectorZ * lineVectorZ * planetModel.inverseCSquared; final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared); final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0; final double BsquaredMinus = B * B - 4.0 * A * C; if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" One point of intersection"); final double inverse2A = 1.0 / (2.0 * A); // One solution only final double t = -B * inverse2A; // Maybe we can save ourselves the cost of construction of a point? final double pointX = lineVectorX * t + x0; final double pointY = lineVectorY * t + y0; final double pointZ = lineVectorZ * t + z0; for (final Membership bound : bounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return NO_POINTS; } } for (final Membership bound : moreBounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return NO_POINTS; } } return new GeoPoint[]{new GeoPoint(pointX, pointY, pointZ)}; } else if (BsquaredMinus > 0.0) { //System.err.println(" Two points of intersection"); final double inverse2A = 1.0 / (2.0 * A); // Two solutions final double sqrtTerm = Math.sqrt(BsquaredMinus); final double t1 = (-B + sqrtTerm) * inverse2A; final double t2 = (-B - sqrtTerm) * inverse2A; // Up to two points being returned. Do what we can to save on object creation though. final double point1X = lineVectorX * t1 + x0; final double point1Y = lineVectorY * t1 + y0; final double point1Z = lineVectorZ * t1 + z0; final double point2X = lineVectorX * t2 + x0; final double point2Y = lineVectorY * t2 + y0; final double point2Z = lineVectorZ * t2 + z0; boolean point1Valid = true; boolean point2Valid = true; for (final Membership bound : bounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } if (point1Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } } for (final Membership bound : bounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } if (point2Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } } if (point1Valid && point2Valid) { return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z), new GeoPoint(point2X, point2Y, point2Z)}; } if (point1Valid) { return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z)}; } if (point2Valid) { return new GeoPoint[]{new GeoPoint(point2X, point2Y, point2Z)}; } return NO_POINTS; } else { //System.err.println(" no solutions - no intersection"); return NO_POINTS; } } /** * Find the points between two planes, where one plane crosses the other, given a set of bounds. * Crossing is not just intersection; the planes cannot touch at just one point on the ellipsoid, * but must cross at two. * * @param planetModel is the planet model to use in finding points. * @param q is the plane to intersect with. * @param bounds is the set of bounds. * @param moreBounds is another set of bounds. * @return the intersection point(s) on the ellipsoid, if there are any. */ protected GeoPoint[] findCrossings(final PlanetModel planetModel, final Plane q, final Membership[] bounds, final Membership[] moreBounds) { // This code in this method is very similar to findIntersections(), but eliminates the cases where // crossings are detected. // Unnormalized, unchecked... final double lineVectorX = y * q.z - z * q.y; final double lineVectorY = z * q.x - x * q.z; final double lineVectorZ = x * q.y - y * q.x; if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) { // Degenerate case: parallel planes return NO_POINTS; } // The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z. // We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes. // To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations // simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are: // 0.7 x + 0.3 y + 0.1 z + 0.0 = 0 // and // 0.9 x - 0.1 y + 0.2 z + 4.0 = 0 // Then we'd pick z = 0, so the equations to solve for x and y would be: // 0.7 x + 0.3y = 0.0 // 0.9 x - 0.1y = -4.0 // ... which can readily be solved using standard linear algebra. Generally: // Q0 x + R0 y = S0 // Q1 x + R1 y = S1 // ... can be solved by Cramer's rule: // x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1) // y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1) // ... where det( a b / c d ) = ad - bc, so: // x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1) // y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1) double x0; double y0; double z0; // We try to maximize the determinant in the denominator final double denomYZ = this.y * q.z - this.z * q.y; final double denomXZ = this.x * q.z - this.z * q.x; final double denomXY = this.x * q.y - this.y * q.x; if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) { // X is the biggest, so our point will have x0 = 0.0 if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) { return NO_POINTS; } final double denom = 1.0 / denomYZ; x0 = 0.0; y0 = (-this.D * q.z - this.z * -q.D) * denom; z0 = (this.y * -q.D + this.D * q.y) * denom; } else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) { // Y is the biggest, so y0 = 0.0 if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) { return NO_POINTS; } final double denom = 1.0 / denomXZ; x0 = (-this.D * q.z - this.z * -q.D) * denom; y0 = 0.0; z0 = (this.x * -q.D + this.D * q.x) * denom; } else { // Z is the biggest, so Z0 = 0.0 if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) { return NO_POINTS; } final double denom = 1.0 / denomXY; x0 = (-this.D * q.y - this.y * -q.D) * denom; y0 = (this.x * -q.D + this.D * q.x) * denom; z0 = 0.0; } // Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which // will yield zero, one, or two points. // The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2 // 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2 // A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0 // [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0 // Use the quadratic formula to determine t values and candidate point(s) final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared + lineVectorY * lineVectorY * planetModel.inverseAbSquared + lineVectorZ * lineVectorZ * planetModel.inverseCSquared; final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared); final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0; final double BsquaredMinus = B * B - 4.0 * A * C; if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) { // One point of intersection: cannot be a crossing. return NO_POINTS; } else if (BsquaredMinus > 0.0) { final double inverse2A = 1.0 / (2.0 * A); // Two solutions final double sqrtTerm = Math.sqrt(BsquaredMinus); final double t1 = (-B + sqrtTerm) * inverse2A; final double t2 = (-B - sqrtTerm) * inverse2A; // Up to two points being returned. Do what we can to save on object creation though. final double point1X = lineVectorX * t1 + x0; final double point1Y = lineVectorY * t1 + y0; final double point1Z = lineVectorZ * t1 + z0; final double point2X = lineVectorX * t2 + x0; final double point2Y = lineVectorY * t2 + y0; final double point2Z = lineVectorZ * t2 + z0; boolean point1Valid = true; boolean point2Valid = true; for (final Membership bound : bounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } if (point1Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } } for (final Membership bound : bounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } if (point2Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } } if (point1Valid && point2Valid) { return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z), new GeoPoint(point2X, point2Y, point2Z)}; } if (point1Valid) { return new GeoPoint[]{new GeoPoint(point1X, point1Y, point1Z)}; } if (point2Valid) { return new GeoPoint[]{new GeoPoint(point2X, point2Y, point2Z)}; } return NO_POINTS; } else { // No solutions. return NO_POINTS; } } /** * Record intersection points for planes with error bounds. * This method calls the Bounds object with every intersection point it can find that matches the criteria. * Each plane is considered to have two sides, one that is D + MINIMUM_RESOLUTION, and one that is * D - MINIMUM_RESOLUTION. Both are examined and intersection points determined. */ protected void findIntersectionBounds(final PlanetModel planetModel, final Bounds boundsInfo, final Plane q, final Membership... bounds) { //System.out.println("Finding intersection bounds"); // Unnormalized, unchecked... final double lineVectorX = y * q.z - z * q.y; final double lineVectorY = z * q.x - x * q.z; final double lineVectorZ = x * q.y - y * q.x; if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) { // Degenerate case: parallel planes //System.out.println(" planes are parallel - no intersection"); return; } // The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z. // We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes. // To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations // simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are: // 0.7 x + 0.3 y + 0.1 z + 0.0 = 0 // and // 0.9 x - 0.1 y + 0.2 z + 4.0 = 0 // Then we'd pick z = 0, so the equations to solve for x and y would be: // 0.7 x + 0.3y = 0.0 // 0.9 x - 0.1y = -4.0 // ... which can readily be solved using standard linear algebra. Generally: // Q0 x + R0 y = S0 // Q1 x + R1 y = S1 // ... can be solved by Cramer's rule: // x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1) // y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1) // ... where det( a b / c d ) = ad - bc, so: // x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1) // y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1) // We try to maximize the determinant in the denominator final double denomYZ = this.y * q.z - this.z * q.y; final double denomXZ = this.x * q.z - this.z * q.x; final double denomXY = this.x * q.y - this.y * q.x; if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) { //System.out.println("X biggest"); // X is the biggest, so our point will have x0 = 0.0 if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) { //System.out.println(" Denominator is zero: no intersection"); return; } final double denom = 1.0 / denomYZ; // Each value of D really is two values of D. That makes 4 combinations. recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, 0.0, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D+MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.y) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, 0.0, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D+MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.y) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, 0.0, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D-MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.y) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, 0.0, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.y * -(q.D-MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.y) * denom, bounds); } else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) { //System.out.println("Y biggest"); // Y is the biggest, so y0 = 0.0 if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) { //System.out.println(" Denominator is zero: no intersection"); return; } final double denom = 1.0 / denomXZ; recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D+MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D+MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D-MINIMUM_RESOLUTION) * q.z - this.z * -(q.D-MINIMUM_RESOLUTION)) * denom, 0.0, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, bounds); } else { //System.out.println("Z biggest"); // Z is the biggest, so Z0 = 0.0 if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) { //System.out.println(" Denominator is zero: no intersection"); return; } final double denom = 1.0 / denomXY; recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D+MINIMUM_RESOLUTION) * q.y - this.y * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, 0.0, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D-MINIMUM_RESOLUTION) * q.y - this.y * -(q.D+MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D+MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, 0.0, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D+MINIMUM_RESOLUTION) * q.y - this.y * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D+MINIMUM_RESOLUTION) * q.x) * denom, 0.0, bounds); recordLineBounds(planetModel, boundsInfo, lineVectorX, lineVectorY, lineVectorZ, (-(this.D-MINIMUM_RESOLUTION) * q.y - this.y * -(q.D-MINIMUM_RESOLUTION)) * denom, (this.x * -(q.D-MINIMUM_RESOLUTION) + (this.D-MINIMUM_RESOLUTION) * q.x) * denom, 0.0, bounds); } } private static void recordLineBounds(final PlanetModel planetModel, final Bounds boundsInfo, final double lineVectorX, final double lineVectorY, final double lineVectorZ, final double x0, final double y0, final double z0, final Membership... bounds) { // Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which // will yield zero, one, or two points. // The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2 // 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2 // A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0 // [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0 // Use the quadratic formula to determine t values and candidate point(s) final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared + lineVectorY * lineVectorY * planetModel.inverseAbSquared + lineVectorZ * lineVectorZ * planetModel.inverseCSquared; final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared); final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0; final double BsquaredMinus = B * B - 4.0 * A * C; if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" One point of intersection"); final double inverse2A = 1.0 / (2.0 * A); // One solution only final double t = -B * inverse2A; // Maybe we can save ourselves the cost of construction of a point? final double pointX = lineVectorX * t + x0; final double pointY = lineVectorY * t + y0; final double pointZ = lineVectorZ * t + z0; for (final Membership bound : bounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return; } } boundsInfo.addPoint(new GeoPoint(pointX, pointY, pointZ)); } else if (BsquaredMinus > 0.0) { //System.err.println(" Two points of intersection"); final double inverse2A = 1.0 / (2.0 * A); // Two solutions final double sqrtTerm = Math.sqrt(BsquaredMinus); final double t1 = (-B + sqrtTerm) * inverse2A; final double t2 = (-B - sqrtTerm) * inverse2A; // Up to two points being returned. Do what we can to save on object creation though. final double point1X = lineVectorX * t1 + x0; final double point1Y = lineVectorY * t1 + y0; final double point1Z = lineVectorZ * t1 + z0; final double point2X = lineVectorX * t2 + x0; final double point2Y = lineVectorY * t2 + y0; final double point2Z = lineVectorZ * t2 + z0; boolean point1Valid = true; boolean point2Valid = true; for (final Membership bound : bounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } for (final Membership bound : bounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { point2Valid = false; break; } } if (point1Valid) { boundsInfo.addPoint(new GeoPoint(point1X, point1Y, point1Z)); } if (point2Valid) { boundsInfo.addPoint(new GeoPoint(point2X, point2Y, point2Z)); } } else { // If we can't intersect line with world, then it's outside the world, so // we have to assume everything is included. boundsInfo.noBound(planetModel); } } /* protected void verifyPoint(final PlanetModel planetModel, final GeoPoint point, final Plane q) { if (!evaluateIsZero(point)) throw new RuntimeException("Intersection point not on original plane; point="+point+", plane="+this); if (!q.evaluateIsZero(point)) throw new RuntimeException("Intersection point not on intersected plane; point="+point+", plane="+q); if (Math.abs(point.x * point.x * planetModel.inverseASquared + point.y * point.y * planetModel.inverseBSquared + point.z * point.z * planetModel.inverseCSquared - 1.0) >= MINIMUM_RESOLUTION) throw new RuntimeException("Intersection point not on ellipsoid; point="+point); } */ /** * Accumulate (x,y,z) bounds information for this plane, intersected with another and the * world. * Updates min/max information using intersection points found. These include the error * envelope for the planes (D +/- MINIMUM_RESOLUTION). * @param planetModel is the planet model to use in determining bounds. * @param boundsInfo is the xyz info to update with additional bounding information. * @param p is the other plane. * @param bounds are the surfaces delineating what's inside the shape. */ public void recordBounds(final PlanetModel planetModel, final XYZBounds boundsInfo, final Plane p, final Membership... bounds) { findIntersectionBounds(planetModel, boundsInfo, p, bounds); } /** * Accumulate (x,y,z) bounds information for this plane, intersected with the unit sphere. * Updates min/max information, using max/min points found * within the specified bounds. * * @param planetModel is the planet model to use in determining bounds. * @param boundsInfo is the xyz info to update with additional bounding information. * @param bounds are the surfaces delineating what's inside the shape. */ public void recordBounds(final PlanetModel planetModel, final XYZBounds boundsInfo, final Membership... bounds) { // Basic plan is to do three intersections of the plane and the planet. // For min/max x, we intersect a vertical plane such that y = 0. // For min/max y, we intersect a vertical plane such that x = 0. // For min/max z, we intersect a vertical plane that is chosen to go through the high point of the arc. // For clarity, load local variables with good names final double A = this.x; final double B = this.y; final double C = this.z; // Do Z. This can be done simply because it is symmetrical. if (!boundsInfo.isSmallestMinZ(planetModel) || !boundsInfo.isLargestMaxZ(planetModel)) { //System.err.println(" computing Z bound"); // Compute Z bounds for this arc // With ellipsoids, we really have only one viable way to do this computation. // Specifically, we compute an appropriate vertical plane, based on the current plane's x-y orientation, and // then intersect it with this one and with the ellipsoid. This gives us zero, one, or two points to use // as bounds. // There is one special case: horizontal circles. These require TWO vertical planes: one for the x, and one for // the y, and we use all four resulting points in the bounds computation. if ((Math.abs(A) >= MINIMUM_RESOLUTION || Math.abs(B) >= MINIMUM_RESOLUTION)) { // NOT a degenerate case //System.err.println(" not degenerate"); final Plane normalizedZPlane = constructNormalizedZPlane(A,B); final GeoPoint[] points = findIntersections(planetModel, normalizedZPlane, bounds, NO_BOUNDS); for (final GeoPoint point : points) { assert planetModel.pointOnSurface(point); //System.err.println(" Point = "+point+"; this.evaluate(point)="+this.evaluate(point)+"; normalizedZPlane.evaluate(point)="+normalizedZPlane.evaluate(point)); addPoint(boundsInfo, bounds, point); } } else { // Since a==b==0, any plane including the Z axis suffices. //System.err.println(" Perpendicular to z"); final GeoPoint[] points = findIntersections(planetModel, normalYPlane, NO_BOUNDS, NO_BOUNDS); boundsInfo.addZValue(points[0]); } } // First, compute common subexpressions final double k = 1.0 / ((x*x + y*y)*planetModel.ab*planetModel.ab + z*z*planetModel.c*planetModel.c); final double abSquared = planetModel.ab * planetModel.ab; final double cSquared = planetModel.c * planetModel.c; final double ASquared = A * A; final double BSquared = B * B; final double CSquared = C * C; final double r = 2.0*D*k; final double rSquared = r * r; if (!boundsInfo.isSmallestMinX(planetModel) || !boundsInfo.isLargestMaxX(planetModel)) { // For min/max x, we need to use lagrange multipliers. // // For this, we need grad(F(x,y,z)) = (dF/dx, dF/dy, dF/dz). // // Minimize and maximize f(x,y,z) = x, with respect to g(x,y,z) = Ax + By + Cz - D and h(x,y,z) = x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 // // grad(f(x,y,z)) = (1,0,0) // grad(g(x,y,z)) = (A,B,C) // grad(h(x,y,z)) = (2x/ab^2,2y/ab^2,2z/c^2) // // Equations we need to simultaneously solve: // // grad(f(x,y,z)) = l * grad(g(x,y,z)) + m * grad(h(x,y,z)) // g(x,y,z) = 0 // h(x,y,z) = 0 // // Equations: // 1 = l*A + m*2x/ab^2 // 0 = l*B + m*2y/ab^2 // 0 = l*C + m*2z/c^2 // Ax + By + Cz + D = 0 // x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 = 0 // // Solve for x,y,z in terms of (l, m): // // x = ((1 - l*A) * ab^2 ) / (2 * m) // y = (-l*B * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) // // Two equations, two unknowns: // // A * (((1 - l*A) * ab^2 ) / (2 * m)) + B * ((-l*B * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0 // // and // // (((1 - l*A) * ab^2 ) / (2 * m))^2/ab^2 + ((-l*B * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0 // // Simple: solve for l and m, then find x from it. // // (a) Use first equation to find l in terms of m. // // A * (((1 - l*A) * ab^2 ) / (2 * m)) + B * ((-l*B * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0 // A * ((1 - l*A) * ab^2 ) + B * (-l*B * ab^2) + C * (-l*C * c^2) + D * 2 * m = 0 // A * ab^2 - l*A^2* ab^2 - B^2 * l * ab^2 - C^2 * l * c^2 + D * 2 * m = 0 // - l *(A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + (A * ab^2 + D * 2 * m) = 0 // l = (A * ab^2 + D * 2 * m) / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // l = A * ab^2 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + m * 2 * D / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // // For convenience: // // k = 1.0 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // // Then: // // l = A * ab^2 * k + m * 2 * D * k // l = k * (A*ab^2 + m*2*D) // // For further convenience: // // q = A*ab^2*k // r = 2*D*k // // l = (r*m + q) // l^2 = (r^2 * m^2 + 2*r*m*q + q^2) // // (b) Simplify the second equation before substitution // // (((1 - l*A) * ab^2 ) / (2 * m))^2/ab^2 + ((-l*B * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0 // ((1 - l*A) * ab^2 )^2/ab^2 + (-l*B * ab^2)^2/ab^2 + (-l*C * c^2)^2/c^2 = 4 * m^2 // (1 - l*A)^2 * ab^2 + (-l*B)^2 * ab^2 + (-l*C)^2 * c^2 = 4 * m^2 // (1 - 2*l*A + l^2*A^2) * ab^2 + l^2*B^2 * ab^2 + l^2*C^2 * c^2 = 4 * m^2 // ab^2 - 2*A*ab^2*l + A^2*ab^2*l^2 + B^2*ab^2*l^2 + C^2*c^2*l^2 - 4*m^2 = 0 // // (c) Substitute for l, l^2 // // ab^2 - 2*A*ab^2*(r*m + q) + A^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + B^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + C^2*c^2*(r^2 * m^2 + 2*r*m*q + q^2) - 4*m^2 = 0 // ab^2 - 2*A*ab^2*r*m - 2*A*ab^2*q + A^2*ab^2*r^2*m^2 + 2*A^2*ab^2*r*q*m + // A^2*ab^2*q^2 + B^2*ab^2*r^2*m^2 + 2*B^2*ab^2*r*q*m + B^2*ab^2*q^2 + C^2*c^2*r^2*m^2 + 2*C^2*c^2*r*q*m + C^2*c^2*q^2 - 4*m^2 = 0 // // (d) Group // // m^2 * [A^2*ab^2*r^2 + B^2*ab^2*r^2 + C^2*c^2*r^2 - 4] + // m * [- 2*A*ab^2*r + 2*A^2*ab^2*r*q + 2*B^2*ab^2*r*q + 2*C^2*c^2*r*q] + // [ab^2 - 2*A*ab^2*q + A^2*ab^2*q^2 + B^2*ab^2*q^2 + C^2*c^2*q^2] = 0 // Useful subexpressions for this bound final double q = A*abSquared*k; final double qSquared = q * q; // Quadratic equation final double a = ASquared*abSquared*rSquared + BSquared*abSquared*rSquared + CSquared*cSquared*rSquared - 4.0; final double b = - 2.0*A*abSquared*r + 2.0*ASquared*abSquared*r*q + 2.0*BSquared*abSquared*r*q + 2.0*CSquared*cSquared*r*q; final double c = abSquared - 2.0*A*abSquared*q + ASquared*abSquared*qSquared + BSquared*abSquared*qSquared + CSquared*cSquared*qSquared; if (Math.abs(a) >= MINIMUM_RESOLUTION_SQUARED) { final double sqrtTerm = b*b - 4.0*a*c; if (Math.abs(sqrtTerm) < MINIMUM_RESOLUTION_SQUARED) { // One solution final double m = -b / (2.0 * a); // Valid? if (Math.abs(m) >= MINIMUM_RESOLUTION) { final double l = r * m + q; // x = ((1 - l*A) * ab^2 ) / (2 * m) // y = (-l*B * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom0 = 0.5 / m; final GeoPoint thePoint = new GeoPoint((1.0-l*A) * abSquared * denom0, -l*B * abSquared * denom0, -l*C * cSquared * denom0); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint); addPoint(boundsInfo, bounds, thePoint); } else { // This is a plane of the form A=n B=0 C=0. We can set a bound only by noting the D value. boundsInfo.addXValue(-D/A); } } else if (sqrtTerm > 0.0) { // Two solutions final double sqrtResult = Math.sqrt(sqrtTerm); final double commonDenom = 0.5/a; final double m1 = (-b + sqrtResult) * commonDenom; assert Math.abs(a * m1 * m1 + b * m1 + c) < MINIMUM_RESOLUTION; final double m2 = (-b - sqrtResult) * commonDenom; assert Math.abs(a * m2 * m2 + b * m2 + c) < MINIMUM_RESOLUTION; if (Math.abs(m1) >= MINIMUM_RESOLUTION || Math.abs(m2) >= MINIMUM_RESOLUTION) { final double l1 = r * m1 + q; final double l2 = r * m2 + q; // x = ((1 - l*A) * ab^2 ) / (2 * m) // y = (-l*B * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom1 = 0.5 / m1; final double denom2 = 0.5 / m2; final GeoPoint thePoint1 = new GeoPoint((1.0-l1*A) * abSquared * denom1, -l1*B * abSquared * denom1, -l1*C * cSquared * denom1); final GeoPoint thePoint2 = new GeoPoint((1.0-l2*A) * abSquared * denom2, -l2*B * abSquared * denom2, -l2*C * cSquared * denom2); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint1): "Point1: "+thePoint1+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint1.x*thePoint1.x*planetModel.inverseAb*planetModel.inverseAb + thePoint1.y*thePoint1.y*planetModel.inverseAb*planetModel.inverseAb + thePoint1.z*thePoint1.z*planetModel.inverseC*planetModel.inverseC); //assert planetModel.pointOnSurface(thePoint2): "Point1: "+thePoint2+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint2.x*thePoint2.x*planetModel.inverseAb*planetModel.inverseAb + thePoint2.y*thePoint2.y*planetModel.inverseAb*planetModel.inverseAb + thePoint2.z*thePoint2.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint1): "Evaluation of point1: "+evaluate(thePoint1); //assert evaluateIsZero(thePoint2): "Evaluation of point2: "+evaluate(thePoint2); addPoint(boundsInfo, bounds, thePoint1); addPoint(boundsInfo, bounds, thePoint2); } else { // This is a plane of the form A=n B=0 C=0. We can set a bound only by noting the D value. boundsInfo.addXValue(-D/A); } } else { // No solutions } } else if (Math.abs(b) > MINIMUM_RESOLUTION_SQUARED) { // a = 0, so m = - c / b final double m = -c / b; final double l = r * m + q; // x = ((1 - l*A) * ab^2 ) / (2 * m) // y = (-l*B * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom0 = 0.5 / m; final GeoPoint thePoint = new GeoPoint((1.0-l*A) * abSquared * denom0, -l*B * abSquared * denom0, -l*C * cSquared * denom0); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint); addPoint(boundsInfo, bounds, thePoint); } else { // Something went very wrong; a = b = 0 } } // Do Y if (!boundsInfo.isSmallestMinY(planetModel) || !boundsInfo.isLargestMaxY(planetModel)) { // For min/max x, we need to use lagrange multipliers. // // For this, we need grad(F(x,y,z)) = (dF/dx, dF/dy, dF/dz). // // Minimize and maximize f(x,y,z) = y, with respect to g(x,y,z) = Ax + By + Cz - D and h(x,y,z) = x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 // // grad(f(x,y,z)) = (0,1,0) // grad(g(x,y,z)) = (A,B,C) // grad(h(x,y,z)) = (2x/ab^2,2y/ab^2,2z/c^2) // // Equations we need to simultaneously solve: // // grad(f(x,y,z)) = l * grad(g(x,y,z)) + m * grad(h(x,y,z)) // g(x,y,z) = 0 // h(x,y,z) = 0 // // Equations: // 0 = l*A + m*2x/ab^2 // 1 = l*B + m*2y/ab^2 // 0 = l*C + m*2z/c^2 // Ax + By + Cz + D = 0 // x^2/ab^2 + y^2/ab^2 + z^2/c^2 - 1 = 0 // // Solve for x,y,z in terms of (l, m): // // x = (-l*A * ab^2 ) / (2 * m) // y = ((1 - l*B) * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) // // Two equations, two unknowns: // // A * ((-l*A * ab^2 ) / (2 * m)) + B * (((1 - l*B) * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0 // // and // // ((-l*A * ab^2 ) / (2 * m))^2/ab^2 + (((1 - l*B) * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0 // // Simple: solve for l and m, then find y from it. // // (a) Use first equation to find l in terms of m. // // A * ((-l*A * ab^2 ) / (2 * m)) + B * (((1 - l*B) * ab^2) / ( 2 * m)) + C * ((-l*C * c^2)/ (2 * m)) + D = 0 // A * (-l*A * ab^2 ) + B * ((1-l*B) * ab^2) + C * (-l*C * c^2) + D * 2 * m = 0 // -A^2*l*ab^2 + B*ab^2 - l*B^2*ab^2 - C^2*l*c^2 + D*2*m = 0 // - l *(A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + (B * ab^2 + D * 2 * m) = 0 // l = (B * ab^2 + D * 2 * m) / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // l = B * ab^2 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) + m * 2 * D / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // // For convenience: // // k = 1.0 / (A^2* ab^2 + B^2 * ab^2 + C^2 * c^2) // // Then: // // l = B * ab^2 * k + m * 2 * D * k // l = k * (B*ab^2 + m*2*D) // // For further convenience: // // q = B*ab^2*k // r = 2*D*k // // l = (r*m + q) // l^2 = (r^2 * m^2 + 2*r*m*q + q^2) // // (b) Simplify the second equation before substitution // // ((-l*A * ab^2 ) / (2 * m))^2/ab^2 + (((1 - l*B) * ab^2) / ( 2 * m))^2/ab^2 + ((-l*C * c^2)/ (2 * m))^2/c^2 - 1 = 0 // (-l*A * ab^2 )^2/ab^2 + ((1 - l*B) * ab^2)^2/ab^2 + (-l*C * c^2)^2/c^2 = 4 * m^2 // (-l*A)^2 * ab^2 + (1 - l*B)^2 * ab^2 + (-l*C)^2 * c^2 = 4 * m^2 // l^2*A^2 * ab^2 + (1 - 2*l*B + l^2*B^2) * ab^2 + l^2*C^2 * c^2 = 4 * m^2 // A^2*ab^2*l^2 + ab^2 - 2*B*ab^2*l + B^2*ab^2*l^2 + C^2*c^2*l^2 - 4*m^2 = 0 // // (c) Substitute for l, l^2 // // A^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + ab^2 - 2*B*ab^2*(r*m + q) + B^2*ab^2*(r^2 * m^2 + 2*r*m*q + q^2) + C^2*c^2*(r^2 * m^2 + 2*r*m*q + q^2) - 4*m^2 = 0 // A^2*ab^2*r^2*m^2 + 2*A^2*ab^2*r*q*m + A^2*ab^2*q^2 + ab^2 - 2*B*ab^2*r*m - 2*B*ab^2*q + B^2*ab^2*r^2*m^2 + // 2*B^2*ab^2*r*q*m + B^2*ab^2*q^2 + C^2*c^2*r^2*m^2 + 2*C^2*c^2*r*q*m + C^2*c^2*q^2 - 4*m^2 = 0 // // (d) Group // // m^2 * [A^2*ab^2*r^2 + B^2*ab^2*r^2 + C^2*c^2*r^2 - 4] + // m * [2*A^2*ab^2*r*q - 2*B*ab^2*r + 2*B^2*ab^2*r*q + 2*C^2*c^2*r*q] + // [A^2*ab^2*q^2 + ab^2 - 2*B*ab^2*q + B^2*ab^2*q^2 + C^2*c^2*q^2] = 0 //System.err.println(" computing Y bound"); // Useful subexpressions for this bound final double q = B*abSquared*k; final double qSquared = q * q; // Quadratic equation final double a = ASquared*abSquared*rSquared + BSquared*abSquared*rSquared + CSquared*cSquared*rSquared - 4.0; final double b = 2.0*ASquared*abSquared*r*q - 2.0*B*abSquared*r + 2.0*BSquared*abSquared*r*q + 2.0*CSquared*cSquared*r*q; final double c = ASquared*abSquared*qSquared + abSquared - 2.0*B*abSquared*q + BSquared*abSquared*qSquared + CSquared*cSquared*qSquared; if (Math.abs(a) >= MINIMUM_RESOLUTION_SQUARED) { final double sqrtTerm = b*b - 4.0*a*c; if (Math.abs(sqrtTerm) < MINIMUM_RESOLUTION_SQUARED) { // One solution final double m = -b / (2.0 * a); // Valid? if (Math.abs(m) >= MINIMUM_RESOLUTION) { final double l = r * m + q; // x = (-l*A * ab^2 ) / (2 * m) // y = ((1.0-l*B) * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom0 = 0.5 / m; final GeoPoint thePoint = new GeoPoint(-l*A * abSquared * denom0, (1.0-l*B) * abSquared * denom0, -l*C * cSquared * denom0); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint1.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint); addPoint(boundsInfo, bounds, thePoint); } else { // This is a plane of the form A=0 B=n C=0. We can set a bound only by noting the D value. boundsInfo.addYValue(-D/B); } } else if (sqrtTerm > 0.0) { // Two solutions final double sqrtResult = Math.sqrt(sqrtTerm); final double commonDenom = 0.5/a; final double m1 = (-b + sqrtResult) * commonDenom; assert Math.abs(a * m1 * m1 + b * m1 + c) < MINIMUM_RESOLUTION; final double m2 = (-b - sqrtResult) * commonDenom; assert Math.abs(a * m2 * m2 + b * m2 + c) < MINIMUM_RESOLUTION; if (Math.abs(m1) >= MINIMUM_RESOLUTION || Math.abs(m2) >= MINIMUM_RESOLUTION) { final double l1 = r * m1 + q; final double l2 = r * m2 + q; // x = (-l*A * ab^2 ) / (2 * m) // y = ((1.0-l*B) * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom1 = 0.5 / m1; final double denom2 = 0.5 / m2; final GeoPoint thePoint1 = new GeoPoint(-l1*A * abSquared * denom1, (1.0-l1*B) * abSquared * denom1, -l1*C * cSquared * denom1); final GeoPoint thePoint2 = new GeoPoint(-l2*A * abSquared * denom2, (1.0-l2*B) * abSquared * denom2, -l2*C * cSquared * denom2); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint1): "Point1: "+thePoint1+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint1.x*thePoint1.x*planetModel.inverseAb*planetModel.inverseAb + thePoint1.y*thePoint1.y*planetModel.inverseAb*planetModel.inverseAb + thePoint1.z*thePoint1.z*planetModel.inverseC*planetModel.inverseC); //assert planetModel.pointOnSurface(thePoint2): "Point2: "+thePoint2+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint2.x*thePoint2.x*planetModel.inverseAb*planetModel.inverseAb + thePoint2.y*thePoint2.y*planetModel.inverseAb*planetModel.inverseAb + thePoint2.z*thePoint2.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint1): "Evaluation of point1: "+evaluate(thePoint1); //assert evaluateIsZero(thePoint2): "Evaluation of point2: "+evaluate(thePoint2); addPoint(boundsInfo, bounds, thePoint1); addPoint(boundsInfo, bounds, thePoint2); } else { // This is a plane of the form A=0 B=n C=0. We can set a bound only by noting the D value. boundsInfo.addYValue(-D/B); } } else { // No solutions } } else if (Math.abs(b) > MINIMUM_RESOLUTION_SQUARED) { // a = 0, so m = - c / b final double m = -c / b; final double l = r * m + q; // x = ( -l*A * ab^2 ) / (2 * m) // y = ((1-l*B) * ab^2) / ( 2 * m) // z = (-l*C * c^2)/ (2 * m) final double denom0 = 0.5 / m; final GeoPoint thePoint = new GeoPoint(-l*A * abSquared * denom0, (1.0-l*B) * abSquared * denom0, -l*C * cSquared * denom0); //Math is not quite accurate enough for this //assert planetModel.pointOnSurface(thePoint): "Point: "+thePoint+"; Planetmodel="+planetModel+"; A="+A+" B="+B+" C="+C+" D="+D+" planetfcn="+ // (thePoint.x*thePoint.x*planetModel.inverseAb*planetModel.inverseAb + thePoint.y*thePoint.y*planetModel.inverseAb*planetModel.inverseAb + thePoint.z*thePoint.z*planetModel.inverseC*planetModel.inverseC); //assert evaluateIsZero(thePoint): "Evaluation of point: "+evaluate(thePoint); addPoint(boundsInfo, bounds, thePoint); } else { // Something went very wrong; a = b = 0 } } } /** * Accumulate bounds information for this plane, intersected with another plane * and the world. * Updates both latitude and longitude information, using max/min points found * within the specified bounds. Also takes into account the error envelope for all * planes being intersected. * * @param planetModel is the planet model to use in determining bounds. * @param boundsInfo is the lat/lon info to update with additional bounding information. * @param p is the other plane. * @param bounds are the surfaces delineating what's inside the shape. */ public void recordBounds(final PlanetModel planetModel, final LatLonBounds boundsInfo, final Plane p, final Membership... bounds) { findIntersectionBounds(planetModel, boundsInfo, p, bounds); } /** * Accumulate bounds information for this plane, intersected with the unit sphere. * Updates both latitude and longitude information, using max/min points found * within the specified bounds. * * @param planetModel is the planet model to use in determining bounds. * @param boundsInfo is the lat/lon info to update with additional bounding information. * @param bounds are the surfaces delineating what's inside the shape. */ public void recordBounds(final PlanetModel planetModel, final LatLonBounds boundsInfo, final Membership... bounds) { // For clarity, load local variables with good names final double A = this.x; final double B = this.y; final double C = this.z; // Now compute latitude min/max points if (!boundsInfo.checkNoTopLatitudeBound() || !boundsInfo.checkNoBottomLatitudeBound()) { //System.err.println("Looking at latitude for plane "+this); // With ellipsoids, we really have only one viable way to do this computation. // Specifically, we compute an appropriate vertical plane, based on the current plane's x-y orientation, and // then intersect it with this one and with the ellipsoid. This gives us zero, one, or two points to use // as bounds. // There is one special case: horizontal circles. These require TWO vertical planes: one for the x, and one for // the y, and we use all four resulting points in the bounds computation. if ((Math.abs(A) >= MINIMUM_RESOLUTION || Math.abs(B) >= MINIMUM_RESOLUTION)) { // NOT a horizontal circle! //System.err.println(" Not a horizontal circle"); final Plane verticalPlane = constructNormalizedZPlane(A,B); final GeoPoint[] points = findIntersections(planetModel, verticalPlane, bounds, NO_BOUNDS); for (final GeoPoint point : points) { addPoint(boundsInfo, bounds, point); } } else { // Horizontal circle. Since a==b, any vertical plane suffices. final GeoPoint[] points = findIntersections(planetModel, normalXPlane, NO_BOUNDS, NO_BOUNDS); boundsInfo.addZValue(points[0]); } //System.err.println("Done latitude bounds"); } // First, figure out our longitude bounds, unless we no longer need to consider that if (!boundsInfo.checkNoLongitudeBound()) { //System.err.println("Computing longitude bounds for "+this); //System.out.println("A = "+A+" B = "+B+" C = "+C+" D = "+D); // Compute longitude bounds double a; double b; double c; if (Math.abs(C) < MINIMUM_RESOLUTION) { // Degenerate; the equation describes a line //System.out.println("It's a zero-width ellipse"); // Ax + By + D = 0 if (Math.abs(D) >= MINIMUM_RESOLUTION) { if (Math.abs(A) > Math.abs(B)) { // Use equation suitable for A != 0 // We need to find the endpoints of the zero-width ellipse. // Geometrically, we have a line segment in x-y space. We need to locate the endpoints // of that line. But luckily, we know some things: specifically, since it is a // degenerate situation in projection, the C value had to have been 0. That // means that our line's endpoints will coincide with the projected ellipse. All we // need to do then is to find the intersection of the projected ellipse and the line // equation: // // A x + B y + D = 0 // // Since A != 0: // x = (-By - D)/A // // The projected ellipse: // x^2/a^2 + y^2/b^2 - 1 = 0 // Substitute: // [(-By-D)/A]^2/a^2 + y^2/b^2 -1 = 0 // Multiply through by A^2: // [-By - D]^2/a^2 + A^2*y^2/b^2 - A^2 = 0 // Multiply out: // B^2*y^2/a^2 + 2BDy/a^2 + D^2/a^2 + A^2*y^2/b^2 - A^2 = 0 // Group: // y^2 * [B^2/a^2 + A^2/b^2] + y [2BD/a^2] + [D^2/a^2-A^2] = 0 a = B * B * planetModel.inverseAbSquared + A * A * planetModel.inverseAbSquared; b = 2.0 * B * D * planetModel.inverseAbSquared; c = D * D * planetModel.inverseAbSquared - A * A; double sqrtClause = b * b - 4.0 * a * c; if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_SQUARED) { double y0 = -b / (2.0 * a); double x0 = (-D - B * y0) / A; double z0 = 0.0; addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0)); } else if (sqrtClause > 0.0) { double sqrtResult = Math.sqrt(sqrtClause); double denom = 1.0 / (2.0 * a); double Hdenom = 1.0 / A; double y0a = (-b + sqrtResult) * denom; double y0b = (-b - sqrtResult) * denom; double x0a = (-D - B * y0a) * Hdenom; double x0b = (-D - B * y0b) * Hdenom; double z0a = 0.0; double z0b = 0.0; addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a)); addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b)); } } else { // Use equation suitable for B != 0 // Since I != 0, we rewrite: // y = (-Ax - D)/B a = B * B * planetModel.inverseAbSquared + A * A * planetModel.inverseAbSquared; b = 2.0 * A * D * planetModel.inverseAbSquared; c = D * D * planetModel.inverseAbSquared - B * B; double sqrtClause = b * b - 4.0 * a * c; if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_SQUARED) { double x0 = -b / (2.0 * a); double y0 = (-D - A * x0) / B; double z0 = 0.0; addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0)); } else if (sqrtClause > 0.0) { double sqrtResult = Math.sqrt(sqrtClause); double denom = 1.0 / (2.0 * a); double Idenom = 1.0 / B; double x0a = (-b + sqrtResult) * denom; double x0b = (-b - sqrtResult) * denom; double y0a = (-D - A * x0a) * Idenom; double y0b = (-D - A * x0b) * Idenom; double z0a = 0.0; double z0b = 0.0; addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a)); addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b)); } } } } else { //System.err.println("General longitude bounds..."); // NOTE WELL: The x,y,z values generated here are NOT on the unit sphere. // They are for lat/lon calculation purposes only. x-y is meant to be used for longitude determination, // and z for latitude, and that's all the values are good for. // (1) Intersect the plane and the ellipsoid, and project the results into the x-y plane: // From plane: // z = (-Ax - By - D) / C // From ellipsoid: // x^2/a^2 + y^2/b^2 + [(-Ax - By - D) / C]^2/c^2 = 1 // Simplify/expand: // C^2*x^2/a^2 + C^2*y^2/b^2 + (-Ax - By - D)^2/c^2 = C^2 // // x^2 * C^2/a^2 + y^2 * C^2/b^2 + x^2 * A^2/c^2 + ABxy/c^2 + ADx/c^2 + ABxy/c^2 + y^2 * B^2/c^2 + BDy/c^2 + ADx/c^2 + BDy/c^2 + D^2/c^2 = C^2 // Group: // [A^2/c^2 + C^2/a^2] x^2 + [B^2/c^2 + C^2/b^2] y^2 + [2AB/c^2]xy + [2AD/c^2]x + [2BD/c^2]y + [D^2/c^2-C^2] = 0 // For convenience, introduce post-projection coefficient variables to make life easier. // E x^2 + F y^2 + G xy + H x + I y + J = 0 double E = A * A * planetModel.inverseCSquared + C * C * planetModel.inverseAbSquared; double F = B * B * planetModel.inverseCSquared + C * C * planetModel.inverseAbSquared; double G = 2.0 * A * B * planetModel.inverseCSquared; double H = 2.0 * A * D * planetModel.inverseCSquared; double I = 2.0 * B * D * planetModel.inverseCSquared; double J = D * D * planetModel.inverseCSquared - C * C; //System.err.println("E = " + E + " F = " + F + " G = " + G + " H = "+ H + " I = " + I + " J = " + J); // Check if the origin is within, by substituting x = 0, y = 0 and seeing if less than zero if (Math.abs(J) >= MINIMUM_RESOLUTION && J > 0.0) { // The derivative of the curve above is: // 2Exdx + 2Fydy + G(xdy+ydx) + Hdx + Idy = 0 // (2Ex + Gy + H)dx + (2Fy + Gx + I)dy = 0 // dy/dx = - (2Ex + Gy + H) / (2Fy + Gx + I) // // The equation of a line going through the origin with the slope dy/dx is: // y = dy/dx x // y = - (2Ex + Gy + H) / (2Fy + Gx + I) x // Rearrange: // (2Fy + Gx + I) y + (2Ex + Gy + H) x = 0 // 2Fy^2 + Gxy + Iy + 2Ex^2 + Gxy + Hx = 0 // 2Ex^2 + 2Fy^2 + 2Gxy + Hx + Iy = 0 // // Multiply the original equation by 2: // 2E x^2 + 2F y^2 + 2G xy + 2H x + 2I y + 2J = 0 // Subtract one from the other, to remove the high-order terms: // Hx + Iy + 2J = 0 // Now, we can substitute either x = or y = into the derivative equation, or into the original equation. // But we will need to base this on which coefficient is non-zero if (Math.abs(H) > Math.abs(I)) { //System.err.println(" Using the y quadratic"); // x = (-2J - Iy)/H // Plug into the original equation: // E [(-2J - Iy)/H]^2 + F y^2 + G [(-2J - Iy)/H]y + H [(-2J - Iy)/H] + I y + J = 0 // E [(-2J - Iy)/H]^2 + F y^2 + G [(-2J - Iy)/H]y - J = 0 // Same equation as derivative equation, except for a factor of 2! So it doesn't matter which we pick. // Plug into derivative equation: // 2E[(-2J - Iy)/H]^2 + 2Fy^2 + 2G[(-2J - Iy)/H]y + H[(-2J - Iy)/H] + Iy = 0 // 2E[(-2J - Iy)/H]^2 + 2Fy^2 + 2G[(-2J - Iy)/H]y - 2J = 0 // E[(-2J - Iy)/H]^2 + Fy^2 + G[(-2J - Iy)/H]y - J = 0 // Multiply by H^2 to make manipulation easier // E[(-2J - Iy)]^2 + F*H^2*y^2 + GH[(-2J - Iy)]y - J*H^2 = 0 // Do the square // E[4J^2 + 4IJy + I^2*y^2] + F*H^2*y^2 + GH(-2Jy - I*y^2) - J*H^2 = 0 // Multiply it out // 4E*J^2 + 4EIJy + E*I^2*y^2 + H^2*Fy^2 - 2GHJy - GH*I*y^2 - J*H^2 = 0 // Group: // y^2 [E*I^2 - GH*I + F*H^2] + y [4EIJ - 2GHJ] + [4E*J^2 - J*H^2] = 0 a = E * I * I - G * H * I + F * H * H; b = 4.0 * E * I * J - 2.0 * G * H * J; c = 4.0 * E * J * J - J * H * H; //System.out.println("a="+a+" b="+b+" c="+c); double sqrtClause = b * b - 4.0 * a * c; //System.out.println("sqrtClause="+sqrtClause); if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_CUBED) { //System.err.println(" One solution"); double y0 = -b / (2.0 * a); double x0 = (-2.0 * J - I * y0) / H; double z0 = (-A * x0 - B * y0 - D) / C; addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0)); } else if (sqrtClause > 0.0) { //System.err.println(" Two solutions"); double sqrtResult = Math.sqrt(sqrtClause); double denom = 1.0 / (2.0 * a); double Hdenom = 1.0 / H; double Cdenom = 1.0 / C; double y0a = (-b + sqrtResult) * denom; double y0b = (-b - sqrtResult) * denom; double x0a = (-2.0 * J - I * y0a) * Hdenom; double x0b = (-2.0 * J - I * y0b) * Hdenom; double z0a = (-A * x0a - B * y0a - D) * Cdenom; double z0b = (-A * x0b - B * y0b - D) * Cdenom; addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a)); addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b)); } } else { //System.err.println(" Using the x quadratic"); // y = (-2J - Hx)/I // Plug into the original equation: // E x^2 + F [(-2J - Hx)/I]^2 + G x[(-2J - Hx)/I] - J = 0 // Multiply by I^2 to make manipulation easier // E * I^2 * x^2 + F [(-2J - Hx)]^2 + GIx[(-2J - Hx)] - J * I^2 = 0 // Do the square // E * I^2 * x^2 + F [ 4J^2 + 4JHx + H^2*x^2] + GI[(-2Jx - H*x^2)] - J * I^2 = 0 // Multiply it out // E * I^2 * x^2 + 4FJ^2 + 4FJHx + F*H^2*x^2 - 2GIJx - HGI*x^2 - J * I^2 = 0 // Group: // x^2 [E*I^2 - GHI + F*H^2] + x [4FJH - 2GIJ] + [4FJ^2 - J*I^2] = 0 // E x^2 + F y^2 + G xy + H x + I y + J = 0 a = E * I * I - G * H * I + F * H * H; b = 4.0 * F * H * J - 2.0 * G * I * J; c = 4.0 * F * J * J - J * I * I; //System.out.println("a="+a+" b="+b+" c="+c); double sqrtClause = b * b - 4.0 * a * c; //System.out.println("sqrtClause="+sqrtClause); if (Math.abs(sqrtClause) < MINIMUM_RESOLUTION_CUBED) { //System.err.println(" One solution; sqrt clause was "+sqrtClause); double x0 = -b / (2.0 * a); double y0 = (-2.0 * J - H * x0) / I; double z0 = (-A * x0 - B * y0 - D) / C; // Verify that x&y fulfill the equation // 2Ex^2 + 2Fy^2 + 2Gxy + Hx + Iy = 0 addPoint(boundsInfo, bounds, new GeoPoint(x0, y0, z0)); } else if (sqrtClause > 0.0) { //System.err.println(" Two solutions"); double sqrtResult = Math.sqrt(sqrtClause); double denom = 1.0 / (2.0 * a); double Idenom = 1.0 / I; double Cdenom = 1.0 / C; double x0a = (-b + sqrtResult) * denom; double x0b = (-b - sqrtResult) * denom; double y0a = (-2.0 * J - H * x0a) * Idenom; double y0b = (-2.0 * J - H * x0b) * Idenom; double z0a = (-A * x0a - B * y0a - D) * Cdenom; double z0b = (-A * x0b - B * y0b - D) * Cdenom; addPoint(boundsInfo, bounds, new GeoPoint(x0a, y0a, z0a)); addPoint(boundsInfo, bounds, new GeoPoint(x0b, y0b, z0b)); } } } } } } /** Add a point to boundsInfo if within a specifically bounded area. * @param boundsInfo is the object to be modified. * @param bounds is the area that the point must be within. * @param point is the point. */ private static void addPoint(final Bounds boundsInfo, final Membership[] bounds, final GeoPoint point) { // Make sure the discovered point is within the bounds for (Membership bound : bounds) { if (!bound.isWithin(point)) return; } // Add the point boundsInfo.addPoint(point); } /** * Determine whether the plane intersects another plane within the * bounds provided. * * @param planetModel is the planet model to use in determining intersection. * @param q is the other plane. * @param notablePoints are points to look at to disambiguate cases when the two planes are identical. * @param moreNotablePoints are additional points to look at to disambiguate cases when the two planes are identical. * @param bounds is one part of the bounds. * @param moreBounds are more bounds. * @return true if there's an intersection. */ public boolean intersects(final PlanetModel planetModel, final Plane q, final GeoPoint[] notablePoints, final GeoPoint[] moreNotablePoints, final Membership[] bounds, final Membership... moreBounds) { //System.err.println("Does plane "+this+" intersect with plane "+q); // If the two planes are identical, then the math will find no points of intersection. // So a special case of this is to check for plane equality. But that is not enough, because // what we really need at that point is to determine whether overlap occurs between the two parts of the intersection // of plane and circle. That is, are there *any* points on the plane that are within the bounds described? if (isNumericallyIdentical(q)) { //System.err.println(" Identical plane"); // The only way to efficiently figure this out will be to have a list of trial points available to evaluate. // We look for any point that fulfills all the bounds. for (GeoPoint p : notablePoints) { if (meetsAllBounds(p, bounds, moreBounds)) { //System.err.println(" found a notable point in bounds, so intersects"); return true; } } for (GeoPoint p : moreNotablePoints) { if (meetsAllBounds(p, bounds, moreBounds)) { //System.err.println(" found a notable point in bounds, so intersects"); return true; } } //System.err.println(" no notable points inside found; no intersection"); return false; } // Save on allocations; do inline instead of calling findIntersections //System.err.println("Looking for intersection between plane "+this+" and plane "+q+" within bounds"); // Unnormalized, unchecked... final double lineVectorX = y * q.z - z * q.y; final double lineVectorY = z * q.x - x * q.z; final double lineVectorZ = x * q.y - y * q.x; if (Math.abs(lineVectorX) < MINIMUM_RESOLUTION && Math.abs(lineVectorY) < MINIMUM_RESOLUTION && Math.abs(lineVectorZ) < MINIMUM_RESOLUTION) { // Degenerate case: parallel planes //System.err.println(" planes are parallel - no intersection"); return false; } // The line will have the equation: A t + A0 = x, B t + B0 = y, C t + C0 = z. // We have A, B, and C. In order to come up with A0, B0, and C0, we need to find a point that is on both planes. // To do this, we find the largest vector value (either x, y, or z), and look for a point that solves both plane equations // simultaneous. For example, let's say that the vector is (0.5,0.5,1), and the two plane equations are: // 0.7 x + 0.3 y + 0.1 z + 0.0 = 0 // and // 0.9 x - 0.1 y + 0.2 z + 4.0 = 0 // Then we'd pick z = 0, so the equations to solve for x and y would be: // 0.7 x + 0.3y = 0.0 // 0.9 x - 0.1y = -4.0 // ... which can readily be solved using standard linear algebra. Generally: // Q0 x + R0 y = S0 // Q1 x + R1 y = S1 // ... can be solved by Cramer's rule: // x = det(S0 R0 / S1 R1) / det(Q0 R0 / Q1 R1) // y = det(Q0 S0 / Q1 S1) / det(Q0 R0 / Q1 R1) // ... where det( a b / c d ) = ad - bc, so: // x = (S0 * R1 - R0 * S1) / (Q0 * R1 - R0 * Q1) // y = (Q0 * S1 - S0 * Q1) / (Q0 * R1 - R0 * Q1) double x0; double y0; double z0; // We try to maximize the determinant in the denominator final double denomYZ = this.y * q.z - this.z * q.y; final double denomXZ = this.x * q.z - this.z * q.x; final double denomXY = this.x * q.y - this.y * q.x; if (Math.abs(denomYZ) >= Math.abs(denomXZ) && Math.abs(denomYZ) >= Math.abs(denomXY)) { // X is the biggest, so our point will have x0 = 0.0 if (Math.abs(denomYZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return false; } final double denom = 1.0 / denomYZ; x0 = 0.0; y0 = (-this.D * q.z - this.z * -q.D) * denom; z0 = (this.y * -q.D + this.D * q.y) * denom; } else if (Math.abs(denomXZ) >= Math.abs(denomXY) && Math.abs(denomXZ) >= Math.abs(denomYZ)) { // Y is the biggest, so y0 = 0.0 if (Math.abs(denomXZ) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return false; } final double denom = 1.0 / denomXZ; x0 = (-this.D * q.z - this.z * -q.D) * denom; y0 = 0.0; z0 = (this.x * -q.D + this.D * q.x) * denom; } else { // Z is the biggest, so Z0 = 0.0 if (Math.abs(denomXY) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" Denominator is zero: no intersection"); return false; } final double denom = 1.0 / denomXY; x0 = (-this.D * q.y - this.y * -q.D) * denom; y0 = (this.x * -q.D + this.D * q.x) * denom; z0 = 0.0; } // Once an intersecting line is determined, the next step is to intersect that line with the ellipsoid, which // will yield zero, one, or two points. // The ellipsoid equation: 1,0 = x^2/a^2 + y^2/b^2 + z^2/c^2 // 1.0 = (At+A0)^2/a^2 + (Bt+B0)^2/b^2 + (Ct+C0)^2/c^2 // A^2 t^2 / a^2 + 2AA0t / a^2 + A0^2 / a^2 + B^2 t^2 / b^2 + 2BB0t / b^2 + B0^2 / b^2 + C^2 t^2 / c^2 + 2CC0t / c^2 + C0^2 / c^2 - 1,0 = 0.0 // [A^2 / a^2 + B^2 / b^2 + C^2 / c^2] t^2 + [2AA0 / a^2 + 2BB0 / b^2 + 2CC0 / c^2] t + [A0^2 / a^2 + B0^2 / b^2 + C0^2 / c^2 - 1,0] = 0.0 // Use the quadratic formula to determine t values and candidate point(s) final double A = lineVectorX * lineVectorX * planetModel.inverseAbSquared + lineVectorY * lineVectorY * planetModel.inverseAbSquared + lineVectorZ * lineVectorZ * planetModel.inverseCSquared; final double B = 2.0 * (lineVectorX * x0 * planetModel.inverseAbSquared + lineVectorY * y0 * planetModel.inverseAbSquared + lineVectorZ * z0 * planetModel.inverseCSquared); final double C = x0 * x0 * planetModel.inverseAbSquared + y0 * y0 * planetModel.inverseAbSquared + z0 * z0 * planetModel.inverseCSquared - 1.0; final double BsquaredMinus = B * B - 4.0 * A * C; if (Math.abs(BsquaredMinus) < MINIMUM_RESOLUTION_SQUARED) { //System.err.println(" One point of intersection"); final double inverse2A = 1.0 / (2.0 * A); // One solution only final double t = -B * inverse2A; // Maybe we can save ourselves the cost of construction of a point? final double pointX = lineVectorX * t + x0; final double pointY = lineVectorY * t + y0; final double pointZ = lineVectorZ * t + z0; for (final Membership bound : bounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return false; } } for (final Membership bound : moreBounds) { if (!bound.isWithin(pointX, pointY, pointZ)) { return false; } } return true; } else if (BsquaredMinus > 0.0) { //System.err.println(" Two points of intersection"); final double inverse2A = 1.0 / (2.0 * A); // Two solutions final double sqrtTerm = Math.sqrt(BsquaredMinus); final double t1 = (-B + sqrtTerm) * inverse2A; final double t2 = (-B - sqrtTerm) * inverse2A; // Up to two points being returned. Do what we can to save on object creation though. final double point1X = lineVectorX * t1 + x0; final double point1Y = lineVectorY * t1 + y0; final double point1Z = lineVectorZ * t1 + z0; boolean point1Valid = true; for (final Membership bound : bounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } if (point1Valid) { for (final Membership bound : moreBounds) { if (!bound.isWithin(point1X, point1Y, point1Z)) { point1Valid = false; break; } } } if (point1Valid) { return true; } final double point2X = lineVectorX * t2 + x0; final double point2Y = lineVectorY * t2 + y0; final double point2Z = lineVectorZ * t2 + z0; for (final Membership bound : bounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { return false; } } for (final Membership bound : moreBounds) { if (!bound.isWithin(point2X, point2Y, point2Z)) { return false; } } return true; } else { //System.err.println(" no solutions - no intersection"); return false; } } /** * Returns true if this plane and the other plane are identical within the margin of error. * @param p is the plane to compare against. * @return true if the planes are numerically identical. */ public boolean isNumericallyIdentical(final Plane p) { // We can get the correlation by just doing a parallel plane check. If that passes, then compute a point on the plane // (using D) and see if it also on the other plane. if (Math.abs(this.y * p.z - this.z * p.y) >= MINIMUM_RESOLUTION) return false; if (Math.abs(this.z * p.x - this.x * p.z) >= MINIMUM_RESOLUTION) return false; if (Math.abs(this.x * p.y - this.y * p.x) >= MINIMUM_RESOLUTION) return false; // Now, see whether the parallel planes are in fact on top of one another. // The math: // We need a single point that fulfills: // Ax + By + Cz + D = 0 // Pick: // x0 = -(A * D) / (A^2 + B^2 + C^2) // y0 = -(B * D) / (A^2 + B^2 + C^2) // z0 = -(C * D) / (A^2 + B^2 + C^2) // Check: // A (x0) + B (y0) + C (z0) + D =? 0 // A (-(A * D) / (A^2 + B^2 + C^2)) + B (-(B * D) / (A^2 + B^2 + C^2)) + C (-(C * D) / (A^2 + B^2 + C^2)) + D ?= 0 // -D [ A^2 / (A^2 + B^2 + C^2) + B^2 / (A^2 + B^2 + C^2) + C^2 / (A^2 + B^2 + C^2)] + D ?= 0 // Yes. final double denom = 1.0 / (p.x * p.x + p.y * p.y + p.z * p.z); return evaluateIsZero(-p.x * p.D * denom, -p.y * p.D * denom, -p.z * p.D * denom); } /** * Locate a point that is within the specified bounds and on the specified plane, that has an arcDistance as * specified from the startPoint. * @param planetModel is the planet model. * @param arcDistanceValue is the arc distance. * @param startPoint is the starting point. * @param bounds are the bounds. * @return zero, one, or two points. */ public GeoPoint[] findArcDistancePoints(final PlanetModel planetModel, final double arcDistanceValue, final GeoPoint startPoint, final Membership... bounds) { if (Math.abs(D) >= MINIMUM_RESOLUTION) { throw new IllegalStateException("Can't find arc distance using plane that doesn't go through origin"); } if (!evaluateIsZero(startPoint)) { throw new IllegalArgumentException("Start point is not on plane"); } assert Math.abs(x*x + y*y + z*z - 1.0) < MINIMUM_RESOLUTION_SQUARED : "Plane needs to be normalized"; // The first step is to rotate coordinates for the point so that the plane lies on the x-y plane. // To acheive this, there will need to be three rotations: // (1) rotate the plane in x-y so that the y axis lies in it. // (2) rotate the plane in x-z so that the plane lies on the x-y plane. // (3) rotate in x-y so that the starting vector points to (1,0,0). // This presumes a normalized plane!! final double azimuthMagnitude = Math.sqrt(this.x * this.x + this.y * this.y); final double cosPlaneAltitude = this.z; final double sinPlaneAltitude = azimuthMagnitude; final double cosPlaneAzimuth = this.x / azimuthMagnitude; final double sinPlaneAzimuth = this.y / azimuthMagnitude; assert Math.abs(sinPlaneAltitude * sinPlaneAltitude + cosPlaneAltitude * cosPlaneAltitude - 1.0) < MINIMUM_RESOLUTION : "Improper sin/cos of altitude: "+(sinPlaneAltitude * sinPlaneAltitude + cosPlaneAltitude * cosPlaneAltitude); assert Math.abs(sinPlaneAzimuth * sinPlaneAzimuth + cosPlaneAzimuth * cosPlaneAzimuth - 1.0) < MINIMUM_RESOLUTION : "Improper sin/cos of azimuth: "+(sinPlaneAzimuth * sinPlaneAzimuth + cosPlaneAzimuth * cosPlaneAzimuth); // Coordinate rotation formula: // xT = xS cos T - yS sin T // yT = xS sin T + yS cos T // But we're rotating backwards, so use: // sin (-T) = -sin (T) // cos (-T) = cos (T) // Now, rotate startpoint in x-y final double x0 = startPoint.x; final double y0 = startPoint.y; final double z0 = startPoint.z; final double x1 = x0 * cosPlaneAzimuth + y0 * sinPlaneAzimuth; final double y1 = -x0 * sinPlaneAzimuth + y0 * cosPlaneAzimuth; final double z1 = z0; // Rotate now in x-z final double x2 = x1 * cosPlaneAltitude - z1 * sinPlaneAltitude; final double y2 = y1; final double z2 = +x1 * sinPlaneAltitude + z1 * cosPlaneAltitude; assert Math.abs(z2) < MINIMUM_RESOLUTION : "Rotation should have put startpoint on x-y plane, instead has value "+z2; // Ok, we have the start point on the x-y plane. To apply the arc distance, we // next need to convert to an angle (in radians). final double startAngle = Math.atan2(y2, x2); // To apply the arc distance, just add to startAngle. final double point1Angle = startAngle + arcDistanceValue; final double point2Angle = startAngle - arcDistanceValue; // Convert each point to x-y final double point1x2 = Math.cos(point1Angle); final double point1y2 = Math.sin(point1Angle); final double point1z2 = 0.0; final double point2x2 = Math.cos(point2Angle); final double point2y2 = Math.sin(point2Angle); final double point2z2 = 0.0; // Now, do the reverse rotations for both points // Altitude... final double point1x1 = point1x2 * cosPlaneAltitude + point1z2 * sinPlaneAltitude; final double point1y1 = point1y2; final double point1z1 = -point1x2 * sinPlaneAltitude + point1z2 * cosPlaneAltitude; final double point2x1 = point2x2 * cosPlaneAltitude + point2z2 * sinPlaneAltitude; final double point2y1 = point2y2; final double point2z1 = -point2x2 * sinPlaneAltitude + point2z2 * cosPlaneAltitude; // Azimuth... final double point1x0 = point1x1 * cosPlaneAzimuth - point1y1 * sinPlaneAzimuth; final double point1y0 = point1x1 * sinPlaneAzimuth + point1y1 * cosPlaneAzimuth; final double point1z0 = point1z1; final double point2x0 = point2x1 * cosPlaneAzimuth - point2y1 * sinPlaneAzimuth; final double point2y0 = point2x1 * sinPlaneAzimuth + point2y1 * cosPlaneAzimuth; final double point2z0 = point2z1; final GeoPoint point1 = planetModel.createSurfacePoint(point1x0, point1y0, point1z0); final GeoPoint point2 = planetModel.createSurfacePoint(point2x0, point2y0, point2z0); // Figure out what to return boolean isPoint1Inside = meetsAllBounds(point1, bounds); boolean isPoint2Inside = meetsAllBounds(point2, bounds); if (isPoint1Inside) { if (isPoint2Inside) { return new GeoPoint[]{point1, point2}; } else { return new GeoPoint[]{point1}; } } else { if (isPoint2Inside) { return new GeoPoint[]{point2}; } else { return new GeoPoint[0]; } } } /** * Check if a vector meets the provided bounds. * @param p is the vector. * @param bounds are the bounds. * @return true if the vector describes a point within the bounds. */ private static boolean meetsAllBounds(final Vector p, final Membership[] bounds) { return meetsAllBounds(p.x, p.y, p.z, bounds); } /** * Check if a vector meets the provided bounds. * @param x is the x value. * @param y is the y value. * @param z is the z value. * @param bounds are the bounds. * @return true if the vector describes a point within the bounds. */ private static boolean meetsAllBounds(final double x, final double y, final double z, final Membership[] bounds) { for (final Membership bound : bounds) { if (!bound.isWithin(x,y,z)) return false; } return true; } /** * Check if a vector meets the provided bounds. * @param p is the vector. * @param bounds are the bounds. * @param moreBounds are an additional set of bounds. * @return true if the vector describes a point within the bounds. */ private static boolean meetsAllBounds(final Vector p, final Membership[] bounds, final Membership[] moreBounds) { return meetsAllBounds(p.x, p.y, p.z, bounds, moreBounds); } /** * Check if a vector meets the provided bounds. * @param x is the x value. * @param y is the y value. * @param z is the z value. * @param bounds are the bounds. * @param moreBounds are an additional set of bounds. * @return true if the vector describes a point within the bounds. */ private static boolean meetsAllBounds(final double x, final double y, final double z, final Membership[] bounds, final Membership[] moreBounds) { return meetsAllBounds(x,y,z, bounds) && meetsAllBounds(x,y,z, moreBounds); } /** * Find a sample point on the intersection between two planes and the world. * @param planetModel is the planet model. * @param q is the second plane to consider. * @return a sample point that is on the intersection between the two planes and the world. */ public GeoPoint getSampleIntersectionPoint(final PlanetModel planetModel, final Plane q) { final GeoPoint[] intersections = findIntersections(planetModel, q, NO_BOUNDS, NO_BOUNDS); if (intersections.length == 0) return null; return intersections[0]; } @Override public String toString() { return "[A=" + x + ", B=" + y + "; C=" + z + "; D=" + D + "]"; } @Override public boolean equals(Object o) { if (!super.equals(o)) return false; if (!(o instanceof Plane)) return false; Plane other = (Plane) o; return other.D == D; } @Override public int hashCode() { int result = super.hashCode(); long temp; temp = Double.doubleToLongBits(D); result = 31 * result + (int) (temp ^ (temp >>> 32)); return result; } }