/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.util; import java.math.BigInteger; /** * Math static utility methods. */ public final class MathUtil { // No instance: private MathUtil() { } /** * Returns {@code x <= 0 ? 0 : Math.floor(Math.log(x) / Math.log(base))} * @param base must be {@code > 1} */ public static int log(long x, int base) { if (base <= 1) { throw new IllegalArgumentException("base must be > 1"); } int ret = 0; while (x >= base) { x /= base; ret++; } return ret; } /** * Calculates logarithm in a given base with doubles. */ public static double log(double base, double x) { return Math.log(x) / Math.log(base); } /** Return the greatest common divisor of <code>a</code> and <code>b</code>, * consistently with {@link BigInteger#gcd(BigInteger)}. * <p><b>NOTE</b>: A greatest common divisor must be positive, but * <code>2^64</code> cannot be expressed as a long although it * is the GCD of {@link Long#MIN_VALUE} and <code>0</code> and the GCD of * {@link Long#MIN_VALUE} and {@link Long#MIN_VALUE}. So in these 2 cases, * and only them, this method will return {@link Long#MIN_VALUE}. */ // see http://en.wikipedia.org/wiki/Binary_GCD_algorithm#Iterative_version_in_C.2B.2B_using_ctz_.28count_trailing_zeros.29 public static long gcd(long a, long b) { a = Math.abs(a); b = Math.abs(b); if (a == 0) { return b; } else if (b == 0) { return a; } final int commonTrailingZeros = Long.numberOfTrailingZeros(a | b); a >>>= Long.numberOfTrailingZeros(a); while (true) { b >>>= Long.numberOfTrailingZeros(b); if (a == b) { break; } else if (a > b || a == Long.MIN_VALUE) { // MIN_VALUE is treated as 2^64 final long tmp = a; a = b; b = tmp; } if (a == 1) { break; } b -= a; } return a << commonTrailingZeros; } /** * Calculates inverse hyperbolic sine of a {@code double} value. * <p> * Special cases: * <ul> * <li>If the argument is NaN, then the result is NaN. * <li>If the argument is zero, then the result is a zero with the same sign as the argument. * <li>If the argument is infinite, then the result is infinity with the same sign as the argument. * </ul> */ public static double asinh(double a) { final double sign; // check the sign bit of the raw representation to handle -0 if (Double.doubleToRawLongBits(a) < 0) { a = Math.abs(a); sign = -1.0d; } else { sign = 1.0d; } return sign * Math.log(Math.sqrt(a * a + 1.0d) + a); } /** * Calculates inverse hyperbolic cosine of a {@code double} value. * <p> * Special cases: * <ul> * <li>If the argument is NaN, then the result is NaN. * <li>If the argument is +1, then the result is a zero. * <li>If the argument is positive infinity, then the result is positive infinity. * <li>If the argument is less than 1, then the result is NaN. * </ul> */ public static double acosh(double a) { return Math.log(Math.sqrt(a * a - 1.0d) + a); } /** * Calculates inverse hyperbolic tangent of a {@code double} value. * <p> * Special cases: * <ul> * <li>If the argument is NaN, then the result is NaN. * <li>If the argument is zero, then the result is a zero with the same sign as the argument. * <li>If the argument is +1, then the result is positive infinity. * <li>If the argument is -1, then the result is negative infinity. * <li>If the argument's absolute value is greater than 1, then the result is NaN. * </ul> */ public static double atanh(double a) { final double mult; // check the sign bit of the raw representation to handle -0 if (Double.doubleToRawLongBits(a) < 0) { a = Math.abs(a); mult = -0.5d; } else { mult = 0.5d; } return mult * Math.log((1.0d + a) / (1.0d - a)); } }