/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.lucene.util; import java.util.Arrays; public class TestSmallFloat extends LuceneTestCase { // original lucene byteToFloat static float orig_byteToFloat(byte b) { if (b == 0) // zero is a special case return 0.0f; int mantissa = b & 7; int exponent = (b >> 3) & 31; int bits = ((exponent+(63-15)) << 24) | (mantissa << 21); return Float.intBitsToFloat(bits); } // original lucene floatToByte (since lucene 1.3) static byte orig_floatToByte_v13(float f) { if (f < 0.0f) // round negatives up to zero f = 0.0f; if (f == 0.0f) // zero is a special case return 0; int bits = Float.floatToIntBits(f); // parse float into parts int mantissa = (bits & 0xffffff) >> 21; int exponent = (((bits >> 24) & 0x7f) - 63) + 15; if (exponent > 31) { // overflow: use max value exponent = 31; mantissa = 7; } if (exponent < 0) { // underflow: use min value exponent = 0; mantissa = 1; } return (byte)((exponent << 3) | mantissa); // pack into a byte } // This is the original lucene floatToBytes (from v1.3) // except with the underflow detection bug fixed for values like 5.8123817E-10f static byte orig_floatToByte(float f) { if (f < 0.0f) // round negatives up to zero f = 0.0f; if (f == 0.0f) // zero is a special case return 0; int bits = Float.floatToIntBits(f); // parse float into parts int mantissa = (bits & 0xffffff) >> 21; int exponent = (((bits >> 24) & 0x7f) - 63) + 15; if (exponent > 31) { // overflow: use max value exponent = 31; mantissa = 7; } if (exponent < 0 || exponent == 0 && mantissa == 0) { // underflow: use min value exponent = 0; mantissa = 1; } return (byte)((exponent << 3) | mantissa); // pack into a byte } public void testByteToFloat() { for (int i=0; i<256; i++) { float f1 = orig_byteToFloat((byte)i); float f2 = SmallFloat.byteToFloat((byte)i, 3,15); float f3 = SmallFloat.byte315ToFloat((byte)i); assertEquals(f1,f2,0.0); assertEquals(f2,f3,0.0); } } public void testFloatToByte() { assertEquals(0, orig_floatToByte_v13(5.8123817E-10f)); // verify the old bug (see LUCENE-2937) assertEquals(1, orig_floatToByte(5.8123817E-10f)); // verify it's fixed in this test code assertEquals(1, SmallFloat.floatToByte315(5.8123817E-10f)); // verify it's fixed // test some constants assertEquals(0, SmallFloat.floatToByte315(0)); assertEquals(1, SmallFloat.floatToByte315(Float.MIN_VALUE)); // underflow rounds up to smallest positive assertEquals(255, SmallFloat.floatToByte315(Float.MAX_VALUE) & 0xff); // overflow rounds down to largest positive assertEquals(255, SmallFloat.floatToByte315(Float.POSITIVE_INFINITY) & 0xff); // all negatives map to 0 assertEquals(0, SmallFloat.floatToByte315(-Float.MIN_VALUE)); assertEquals(0, SmallFloat.floatToByte315(-Float.MAX_VALUE)); assertEquals(0, SmallFloat.floatToByte315(Float.NEGATIVE_INFINITY)); // up iterations for more exhaustive test after changing something int num = atLeast(100000); for (int i = 0; i < num; i++) { float f = Float.intBitsToFloat(random().nextInt()); if (Float.isNaN(f)) continue; // skip NaN byte b1 = orig_floatToByte(f); byte b2 = SmallFloat.floatToByte(f,3,15); byte b3 = SmallFloat.floatToByte315(f); assertEquals(b1,b2); assertEquals(b2,b3); } } public void testInt4() { for (int i = 0; i <= 16; ++i) { // all values in 0-16 are encoded accurately assertEquals(i, SmallFloat.int4ToLong(SmallFloat.longToInt4(i))); } final int maxEncoded = SmallFloat.longToInt4(Long.MAX_VALUE); for (int i = 1; i < maxEncoded; ++i) { assertTrue(SmallFloat.int4ToLong(i) > SmallFloat.int4ToLong(i - 1)); } final int iters = atLeast(1000); for (int iter = 0; iter < iters; ++iter) { final long l = TestUtil.nextLong(random(), 0, 1L << TestUtil.nextInt(random(), 5, 61)); int numBits = 64 - Long.numberOfLeadingZeros(l); long expected = l; if (numBits > 4) { long mask = ~0L << (numBits - 4); expected &= mask; } long l2 = SmallFloat.int4ToLong(SmallFloat.longToInt4(l)); assertEquals(expected, l2); } } public void testByte4() { int[] decoded = new int[256]; for (int b = 0; b < 256; ++b) { decoded[b] = SmallFloat.byte4ToInt((byte) b); assertEquals((byte) b, SmallFloat.intToByte4(decoded[b])); } for (int i = 1; i < 256; ++i) { assertTrue(decoded[i] > decoded[i-1]); } assertEquals((byte) 255, SmallFloat.intToByte4(Integer.MAX_VALUE)); final int iters = atLeast(1000); for (int iter = 0; iter < iters; ++iter) { final int i = random().nextInt(1 << TestUtil.nextInt(random(), 5, 30)); int idx = Arrays.binarySearch(decoded, i); if (idx < 0) { idx = -2 - idx; } assertTrue(decoded[idx] <= i); assertEquals((byte) idx, SmallFloat.intToByte4(i)); } } /*** // Do an exhaustive test of all possible floating point values // for the 315 float against the original norm encoding in Similarity. // Takes 75 seconds on my Pentium4 3GHz, with Java5 -server public void testAllFloats() { for(int i = Integer.MIN_VALUE;;i++) { float f = Float.intBitsToFloat(i); if (f==f) { // skip non-numbers byte b1 = orig_floatToByte(f); byte b2 = SmallFloat.floatToByte315(f); if (b1!=b2 || b2==0 && f>0) { fail("Failed floatToByte315 for float " + f + " source bits="+Integer.toHexString(i) + " float raw bits=" + Integer.toHexString(Float.floatToRawIntBits(i))); } } if (i==Integer.MAX_VALUE) break; } } ***/ }