/* * Copyright 2013 MovingBlocks * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.terasology.utilities.procedural; import org.terasology.math.TeraMath; import org.terasology.utilities.random.FastRandom; /** * A speed-improved simplex noise algorithm for Simplex noise in 2D, 3D and 4D. * <br><br> * Based on example code by Stefan Gustavson (stegu@itn.liu.se). * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). * Better rank ordering method by Stefan Gustavson in 2012. * <br><br> * This could be speeded up even further, but it's useful as it is. * <br><br> * Version 2012-03-09 * <br><br> * This code was placed in the public domain by its original author, * Stefan Gustavson. You may use it as you see fit, but * attribution is appreciated. * <br><br> * See http://staffwww.itn.liu.se/~stegu/ * <br><br> * msteiger: Introduced seed value */ public class SimplexNoise extends AbstractNoise implements Noise2D, Noise3D { private static Grad[] grad3 = { new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0), new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1), new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)}; private static Grad[] grad4 = { new Grad(0, 1, 1, 1), new Grad(0, 1, 1, -1), new Grad(0, 1, -1, 1), new Grad(0, 1, -1, -1), new Grad(0, -1, 1, 1), new Grad(0, -1, 1, -1), new Grad(0, -1, -1, 1), new Grad(0, -1, -1, -1), new Grad(1, 0, 1, 1), new Grad(1, 0, 1, -1), new Grad(1, 0, -1, 1), new Grad(1, 0, -1, -1), new Grad(-1, 0, 1, 1), new Grad(-1, 0, 1, -1), new Grad(-1, 0, -1, 1), new Grad(-1, 0, -1, -1), new Grad(1, 1, 0, 1), new Grad(1, 1, 0, -1), new Grad(1, -1, 0, 1), new Grad(1, -1, 0, -1), new Grad(-1, 1, 0, 1), new Grad(-1, 1, 0, -1), new Grad(-1, -1, 0, 1), new Grad(-1, -1, 0, -1), new Grad(1, 1, 1, 0), new Grad(1, 1, -1, 0), new Grad(1, -1, 1, 0), new Grad(1, -1, -1, 0), new Grad(-1, 1, 1, 0), new Grad(-1, 1, -1, 0), new Grad(-1, -1, 1, 0), new Grad(-1, -1, -1, 0)}; // Skewing and unskewing factors for 2, 3, and 4 dimensions private static final float F2 = 0.5f * (float) (Math.sqrt(3.0f) - 1.0f); private static final float G2 = (3.0f - (float) Math.sqrt(3.0f)) / 6.0f; private static final float F3 = 1.0f / 3.0f; private static final float G3 = 1.0f / 6.0f; private static final float F4 = ((float) Math.sqrt(5.0f) - 1.0f) / 4.0f; private static final float G4 = (5.0f - (float) Math.sqrt(5.0f)) / 20.0f; private final short[] perm = new short[512]; private final short[] permMod12 = new short[512]; /** * Initialize permutations with a given seed * * @param seed a seed value used for permutation shuffling */ public SimplexNoise(long seed) { FastRandom rand = new FastRandom(seed); short[] p = new short[256]; // Initialize with all values [0..255] for (short i = 0; i < 256; i++) { p[i] = i; } // Shuffle the array for (int i = 0; i < 256; i++) { int j = rand.nextInt(256); short swap = p[i]; p[i] = p[j]; p[j] = swap; } for (int i = 0; i < 512; i++) { perm[i] = p[i & 255]; permMod12[i] = (short) (perm[i] % 12); } } // This method is a *lot* faster than using (int)Math.floor(x) private static float dot(Grad g, float x, float y) { return g.x * x + g.y * y; } private static float dot(Grad g, float x, float y, float z) { return g.x * x + g.y * y + g.z * z; } private static float dot(Grad g, float x, float y, float z, float w) { return g.x * x + g.y * y + g.z * z + g.w * w; } /** * 2D simplex noise * * @param xin the x input coordinate * @param yin the y input coordinate * @return a noise value in the interval [-1,1] */ @Override public float noise(float xin, float yin) { float n0; float n1; float n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (xin + yin) * F2; // Hairy factor for 2D int i = TeraMath.floorToInt(xin + s); int j = TeraMath.floorToInt(yin + s); float t = (i + j) * G2; float xo0 = i - t; // Unskew the cell origin back to (x,y) space float yo0 = j - t; float x0 = xin - xo0; // The x,y distances from the cell origin float y0 = yin - yo0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1; // Offsets for second (middle) corner of simplex in (i,j) coords int j1; if (x0 > y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1) i1 = 1; j1 = 0; } else { // upper triangle, YX order: (0,0)->(0,1)->(1,1) i1 = 0; j1 = 1; } // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = permMod12[ii + perm[jj]]; int gi1 = permMod12[ii + i1 + perm[jj + j1]]; int gi2 = permMod12[ii + 1 + perm[jj + 1]]; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0) { n0 = 0.0f; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0) { n1 = 0.0f; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0) { n2 = 0.0f; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0f * (n0 + n1 + n2); } /** * 3D simplex noise * * @param xin the x input coordinate * @param yin the y input coordinate * @param zin the z input coordinate * @return a noise value in the interval [-1,1] */ @Override public float noise(float xin, float yin, float zin) { float n0; float n1; float n2; float n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D int i = TeraMath.floorToInt(xin + s); int j = TeraMath.floorToInt(yin + s); int k = TeraMath.floorToInt(zin + s); float t = (i + j + k) * G3; float xo0 = i - t; // Unskew the cell origin back to (x,y,z) space float yo0 = j - t; float zo0 = k - t; float x0 = xin - xo0; // The x,y,z distances from the cell origin float y0 = yin - yo0; float z0 = zin - zo0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1; int j1; int k1; // Offsets for second corner of simplex in (i,j,k) coords int i2; int j2; int k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) { // X Y Z order i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } else if (x0 >= z0) { // X Z Y order i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } else { // Z X Y order i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } } else { // x0<y0 if (y0 < z0) { // Z Y X order i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } else if (x0 < z0) { // Y Z X order i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } else { // Y X Z order i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords float y1 = y0 - j1 + G3; float z1 = z0 - k1 + G3; float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords float y2 = y0 - j2 + 2.0f * G3; float z2 = z0 - k2 + 2.0f * G3; float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords float y3 = y0 - 1.0f + 3.0f * G3; float z3 = z0 - 1.0f + 3.0f * G3; // Work out the hashed gradient indices of the four simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int gi0 = permMod12[ii + perm[jj + perm[kk]]]; int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]]; int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]]; int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]]; // Calculate the contribution from the four corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0) { n0 = 0.0f; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0) { n1 = 0.0f; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0) { n2 = 0.0f; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0) { n3 = 0.0f; } else { t3 *= t3; n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0f * (n0 + n1 + n2 + n3); } /** * 4D simplex noise, better simplex rank ordering method 2012-03-09 * * @param xin the x input coordinate * @param yin the y input coordinate * @param zin the z input coordinate * @return a noise value in the interval [-1,1] */ public float noise(float xin, float yin, float zin, float win) { float n0; float n1; float n2; float n3; float n4; // Noise contributions from the five corners // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in float s = (xin + yin + zin + win) * F4; // Factor for 4D skewing int i = TeraMath.floorToInt(xin + s); int j = TeraMath.floorToInt(yin + s); int k = TeraMath.floorToInt(zin + s); int l = TeraMath.floorToInt(win + s); float t = (i + j + k + l) * G4; // Factor for 4D unskewing float xo0 = i - t; // Unskew the cell origin back to (x,y,z,w) space float yo0 = j - t; float zo0 = k - t; float wo0 = l - t; float x0 = xin - xo0; // The x,y,z,w distances from the cell origin float y0 = yin - yo0; float z0 = zin - zo0; float w0 = win - wo0; // For the 4D case, the simplex is a 4D shape I won't even try to describe. // To find out which of the 24 possible simplices we're in, we need to // determine the magnitude ordering of x0, y0, z0 and w0. // Six pair-wise comparisons are performed between each possible pair // of the four coordinates, and the results are used to rank the numbers. int rankx = 0; int ranky = 0; int rankz = 0; int rankw = 0; if (x0 > y0) { rankx++; } else { ranky++; } if (x0 > z0) { rankx++; } else { rankz++; } if (x0 > w0) { rankx++; } else { rankw++; } if (y0 > z0) { ranky++; } else { rankz++; } if (y0 > w0) { ranky++; } else { rankw++; } if (z0 > w0) { rankz++; } else { rankw++; } int i1; int j1; int k1; int l1; // The integer offsets for the second simplex corner int i2; int j2; int k2; int l2; // The integer offsets for the third simplex corner int i3; int j3; int k3; int l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w // impossible. Only the 24 indices which have non-zero entries make any sense. // We use a thresholding to set the coordinates in turn from the largest magnitude. // Rank 3 denotes the largest coordinate. i1 = rankx >= 3 ? 1 : 0; j1 = ranky >= 3 ? 1 : 0; k1 = rankz >= 3 ? 1 : 0; l1 = rankw >= 3 ? 1 : 0; // Rank 2 denotes the second largest coordinate. i2 = rankx >= 2 ? 1 : 0; j2 = ranky >= 2 ? 1 : 0; k2 = rankz >= 2 ? 1 : 0; l2 = rankw >= 2 ? 1 : 0; // Rank 1 denotes the second smallest coordinate. i3 = rankx >= 1 ? 1 : 0; j3 = ranky >= 1 ? 1 : 0; k3 = rankz >= 1 ? 1 : 0; l3 = rankw >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to compute that. float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords float y1 = y0 - j1 + G4; float z1 = z0 - k1 + G4; float w1 = w0 - l1 + G4; float x2 = x0 - i2 + 2.0f * G4; // Offsets for third corner in (x,y,z,w) coords float y2 = y0 - j2 + 2.0f * G4; float z2 = z0 - k2 + 2.0f * G4; float w2 = w0 - l2 + 2.0f * G4; float x3 = x0 - i3 + 3.0f * G4; // Offsets for fourth corner in (x,y,z,w) coords float y3 = y0 - j3 + 3.0f * G4; float z3 = z0 - k3 + 3.0f * G4; float w3 = w0 - l3 + 3.0f * G4; float x4 = x0 - 1.0f + 4.0f * G4; // Offsets for last corner in (x,y,z,w) coords float y4 = y0 - 1.0f + 4.0f * G4; float z4 = z0 - 1.0f + 4.0f * G4; float w4 = w0 - 1.0f + 4.0f * G4; // Work out the hashed gradient indices of the five simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32; int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32; int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32; int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32; int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; // Calculate the contribution from the five corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0) { n0 = 0.0f; } else { t0 *= t0; n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0) { n1 = 0.0f; } else { t1 *= t1; n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0) { n2 = 0.f; } else { t2 *= t2; n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0) { n3 = 0.0f; } else { t3 *= t3; n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); } float t4 = 0.6f - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0) { n4 = 0.0f; } else { t4 *= t4; n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 27.0f * (n0 + n1 + n2 + n3 + n4); } // Inner class to speed up gradient computations // (array access is a lot slower than member access) private static class Grad { float x; float y; float z; float w; Grad(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } Grad(float x, float y, float z, float w) { this.x = x; this.y = y; this.z = z; this.w = w; } } }