package org.bouncycastle.crypto.macs; import org.bouncycastle.crypto.BlockCipher; import org.bouncycastle.crypto.CipherParameters; import org.bouncycastle.crypto.DataLengthException; import org.bouncycastle.crypto.Mac; import org.bouncycastle.crypto.paddings.BlockCipherPadding; import org.bouncycastle.crypto.params.ParametersWithIV; /** * implements a Cipher-FeedBack (CFB) mode on top of a simple cipher. */ class MacCFBBlockCipher { private byte[] IV; private byte[] cfbV; private byte[] cfbOutV; private int blockSize; private BlockCipher cipher = null; /** * Basic constructor. * * @param cipher the block cipher to be used as the basis of the * feedback mode. * @param blockSize the block size in bits (note: a multiple of 8) */ public MacCFBBlockCipher( BlockCipher cipher, int bitBlockSize) { this.cipher = cipher; this.blockSize = bitBlockSize / 8; this.IV = new byte[cipher.getBlockSize()]; this.cfbV = new byte[cipher.getBlockSize()]; this.cfbOutV = new byte[cipher.getBlockSize()]; } /** * Initialise the cipher and, possibly, the initialisation vector (IV). * If an IV isn't passed as part of the parameter, the IV will be all zeros. * An IV which is too short is handled in FIPS compliant fashion. * * @param param the key and other data required by the cipher. * @exception IllegalArgumentException if the params argument is * inappropriate. */ public void init( CipherParameters params) throws IllegalArgumentException { if (params instanceof ParametersWithIV) { ParametersWithIV ivParam = (ParametersWithIV)params; byte[] iv = ivParam.getIV(); if (iv.length < IV.length) { System.arraycopy(iv, 0, IV, IV.length - iv.length, iv.length); } else { System.arraycopy(iv, 0, IV, 0, IV.length); } reset(); cipher.init(true, ivParam.getParameters()); } else { reset(); cipher.init(true, params); } } /** * return the algorithm name and mode. * * @return the name of the underlying algorithm followed by "/CFB" * and the block size in bits. */ public String getAlgorithmName() { return cipher.getAlgorithmName() + "/CFB" + (blockSize * 8); } /** * return the block size we are operating at. * * @return the block size we are operating at (in bytes). */ public int getBlockSize() { return blockSize; } /** * Process one block of input from the array in and write it to * the out array. * * @param in the array containing the input data. * @param inOff offset into the in array the data starts at. * @param out the array the output data will be copied into. * @param outOff the offset into the out array the output will start at. * @exception DataLengthException if there isn't enough data in in, or * space in out. * @exception IllegalStateException if the cipher isn't initialised. * @return the number of bytes processed and produced. */ public int processBlock( byte[] in, int inOff, byte[] out, int outOff) throws DataLengthException, IllegalStateException { if ((inOff + blockSize) > in.length) { throw new DataLengthException("input buffer too short"); } if ((outOff + blockSize) > out.length) { throw new DataLengthException("output buffer too short"); } cipher.processBlock(cfbV, 0, cfbOutV, 0); // // XOR the cfbV with the plaintext producing the cipher text // for (int i = 0; i < blockSize; i++) { out[outOff + i] = (byte)(cfbOutV[i] ^ in[inOff + i]); } // // change over the input block. // System.arraycopy(cfbV, blockSize, cfbV, 0, cfbV.length - blockSize); System.arraycopy(out, outOff, cfbV, cfbV.length - blockSize, blockSize); return blockSize; } /** * reset the chaining vector back to the IV and reset the underlying * cipher. */ public void reset() { System.arraycopy(IV, 0, cfbV, 0, IV.length); cipher.reset(); } void getMacBlock( byte[] mac) { cipher.processBlock(cfbV, 0, mac, 0); } } public class CFBBlockCipherMac implements Mac { private byte[] mac; private byte[] buf; private int bufOff; private MacCFBBlockCipher cipher; private BlockCipherPadding padding = null; private int macSize; /** * create a standard MAC based on a CFB block cipher. This will produce an * authentication code half the length of the block size of the cipher, with * the CFB mode set to 8 bits. * * @param cipher the cipher to be used as the basis of the MAC generation. */ public CFBBlockCipherMac( BlockCipher cipher) { this(cipher, 8, (cipher.getBlockSize() * 8) / 2, null); } /** * create a standard MAC based on a CFB block cipher. This will produce an * authentication code half the length of the block size of the cipher, with * the CFB mode set to 8 bits. * * @param cipher the cipher to be used as the basis of the MAC generation. * @param padding the padding to be used. */ public CFBBlockCipherMac( BlockCipher cipher, BlockCipherPadding padding) { this(cipher, 8, (cipher.getBlockSize() * 8) / 2, padding); } /** * create a standard MAC based on a block cipher with the size of the * MAC been given in bits. This class uses CFB mode as the basis for the * MAC generation. * <p> * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * * @param cipher the cipher to be used as the basis of the MAC generation. * @param cfbBitSize the size of an output block produced by the CFB mode. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8. */ public CFBBlockCipherMac( BlockCipher cipher, int cfbBitSize, int macSizeInBits) { this(cipher, cfbBitSize, macSizeInBits, null); } /** * create a standard MAC based on a block cipher with the size of the * MAC been given in bits. This class uses CFB mode as the basis for the * MAC generation. * <p> * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * * @param cipher the cipher to be used as the basis of the MAC generation. * @param cfbBitSize the size of an output block produced by the CFB mode. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8. * @param padding a padding to be used. */ public CFBBlockCipherMac( BlockCipher cipher, int cfbBitSize, int macSizeInBits, BlockCipherPadding padding) { if ((macSizeInBits % 8) != 0) { throw new IllegalArgumentException("MAC size must be multiple of 8"); } mac = new byte[cipher.getBlockSize()]; this.cipher = new MacCFBBlockCipher(cipher, cfbBitSize); this.padding = padding; this.macSize = macSizeInBits / 8; buf = new byte[this.cipher.getBlockSize()]; bufOff = 0; } public String getAlgorithmName() { return cipher.getAlgorithmName(); } public void init( CipherParameters params) { reset(); cipher.init(params); } public int getMacSize() { return macSize; } public void update( byte in) { if (bufOff == buf.length) { cipher.processBlock(buf, 0, mac, 0); bufOff = 0; } buf[bufOff++] = in; } public void update( byte[] in, int inOff, int len) { if (len < 0) { throw new IllegalArgumentException("Can't have a negative input length!"); } int blockSize = cipher.getBlockSize(); int resultLen = 0; int gapLen = blockSize - bufOff; if (len > gapLen) { System.arraycopy(in, inOff, buf, bufOff, gapLen); resultLen += cipher.processBlock(buf, 0, mac, 0); bufOff = 0; len -= gapLen; inOff += gapLen; while (len > blockSize) { resultLen += cipher.processBlock(in, inOff, mac, 0); len -= blockSize; inOff += blockSize; } } System.arraycopy(in, inOff, buf, bufOff, len); bufOff += len; } public int doFinal( byte[] out, int outOff) { int blockSize = cipher.getBlockSize(); // // pad with zeroes // if (this.padding == null) { while (bufOff < blockSize) { buf[bufOff] = 0; bufOff++; } } else { padding.addPadding(buf, bufOff); } cipher.processBlock(buf, 0, mac, 0); cipher.getMacBlock(mac); System.arraycopy(mac, 0, out, outOff, macSize); reset(); return macSize; } /** * Reset the mac generator. */ public void reset() { /* * clean the buffer. */ for (int i = 0; i < buf.length; i++) { buf[i] = 0; } bufOff = 0; /* * reset the underlying cipher. */ cipher.reset(); } }