/* Copyright 2002-2017 CS Systèmes d'Information
* Licensed to CS Systèmes d'Information (CS) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* CS licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.orekit.forces.gravity;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.hipparchus.analysis.differentiation.DerivativeStructure;
import org.hipparchus.dfp.Dfp;
import org.hipparchus.dfp.DfpField;
/** Implementation of associated Legendre functions from defining formulas.
* <p>
* This implementation is for test purposes only! It is limited to low degrees
* and order and is slow.
* </p>
* @author Luc Maisonobe
*/
class AssociatedLegendreFunction {
static final Map<Integer,List<Dfp[]>> LEGENDRE_POLYNOMIALS = new HashMap<Integer, List<Dfp[]>>();
final int m;
final Dfp[] polynomial;
final Dfp normalization;
private Dfp[] getLegendrePolynomial(int n, DfpField dfpField) {
// get (or create) the list of polynomials for the specified field
List<Dfp[]> list = LEGENDRE_POLYNOMIALS.get(dfpField.getRadixDigits());
if (list == null) {
list = new ArrayList<Dfp[]>();
list.add(new Dfp[] {
dfpField.getOne() // P0(X) = 1
});
list.add(new Dfp[] {
dfpField.getZero(), dfpField.getOne() // P1(X) = 0 + 1 * X
});
}
while (list.size() <= n) {
// build polynomial Pk+1 using recursion formula
// (k+1) P<sub>k+1</sub>(X) = (2k+1) X P<sub>k</sub>(X) - k P<sub>k-1</sub>(X)
int k = list.size() - 1;
Dfp kDfp = dfpField.newDfp(k);
Dfp kP1Dfp = kDfp.add(dfpField.getOne());
Dfp ckDfp = kP1Dfp.add(kDfp).divide(kP1Dfp);
Dfp[] pk = list.get(k);
Dfp ckM1Dfp = kDfp.divide(kP1Dfp).negate();
Dfp[] pkM1 = list.get(k - 1);
Dfp[] pkP1 = new Dfp[k + 2];
pkP1[0] = ckM1Dfp.multiply(pkM1[0]);
for (int i = 0; i < k; ++i) {
if ((k - i) % 2 == 1) {
pkP1[i + 1] = dfpField.getZero();
} else {
pkP1[i + 1] = ckDfp.multiply(pk[i]).add(ckM1Dfp.multiply(pkM1[i + 1]));
}
}
pkP1[k + 1] = ckDfp.multiply(pk[k]);
list.add(pkP1);
}
// retrieve degree n polynomial
return list.get(n);
}
private Dfp[] differentiateLegendrePolynomial(Dfp[] p, int m, DfpField dfpField) {
Dfp[] dp = new Dfp[p.length - m];
for (int i = 0; i < dp.length; ++i) {
dp[i] = p[i + m];
for (int j = m; j > 0; --j) {
dp[i] = dp[i].multiply(dfpField.newDfp(i + j));
}
}
return dp;
}
public AssociatedLegendreFunction(boolean normalized, int n, int m, DfpField dfpField) {
this.m = m;
// store mth derivative of the degree n Legendre polynomial
polynomial = differentiateLegendrePolynomial(getLegendrePolynomial(n, dfpField), m, dfpField);
if (normalized) {
// compute normalization coefficient
Dfp c = dfpField.newDfp(((m == 0) ? 1.0 : 2.0) * (2 * n + 1));
for (int k = 0; k < m; ++k) {
c = c.divide(dfpField.newDfp((n + 1 + k) * (n - k)));
}
this.normalization = c.sqrt();
} else {
this.normalization = dfpField.getOne();
}
}
public DerivativeStructure value(DerivativeStructure t) {
DerivativeStructure y1 = t.getField().getOne().multiply(polynomial[polynomial.length - 1].toDouble());
for (int j = polynomial.length - 2; j >= 0; j--) {
y1 = y1.multiply(t).add(polynomial[j].toDouble());
}
DerivativeStructure oneMinusT2 = t.getField().getOne().subtract(t.multiply(t));
DerivativeStructure y2 = oneMinusT2.pow(m).sqrt();
return y1.multiply(y2).multiply(normalization.toDouble());
}
public Dfp value(Dfp t) {
Dfp y1 = polynomial[polynomial.length - 1];
for (int j = polynomial.length - 2; j >= 0; j--) {
y1 = y1.multiply(t).add(polynomial[j]);
}
Dfp oneMinusT2 = t.getField().getOne().subtract(t.multiply(t));
Dfp y2 = t.getField().getOne();
for (int j = 0; j < m; ++j) {
y2 = y2.multiply(oneMinusT2);
}
y2 = y2.sqrt();
return y1.multiply(y2).multiply(normalization);
}
}