/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.forces.drag; import java.util.stream.Stream; import org.hipparchus.Field; import org.hipparchus.RealFieldElement; import org.hipparchus.analysis.differentiation.DSFactory; import org.hipparchus.analysis.differentiation.DerivativeStructure; import org.hipparchus.geometry.euclidean.threed.FieldRotation; import org.hipparchus.geometry.euclidean.threed.FieldVector3D; import org.hipparchus.geometry.euclidean.threed.Vector3D; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitMessages; import org.orekit.forces.AbstractForceModel; import org.orekit.forces.drag.atmosphere.Atmosphere; import org.orekit.frames.Frame; import org.orekit.frames.Transform; import org.orekit.propagation.FieldSpacecraftState; import org.orekit.propagation.SpacecraftState; import org.orekit.propagation.events.EventDetector; import org.orekit.propagation.events.FieldEventDetector; import org.orekit.propagation.numerical.FieldTimeDerivativesEquations; import org.orekit.propagation.numerical.TimeDerivativesEquations; import org.orekit.time.AbsoluteDate; import org.orekit.time.FieldAbsoluteDate; import org.orekit.utils.FieldPVCoordinates; import org.orekit.utils.ParameterDriver; /** Atmospheric drag force model. * * The drag acceleration is computed as follows : * * γ = (1/2 * ρ * V² * S / Mass) * DragCoefVector * * With DragCoefVector = {C<sub>x</sub>, C<sub>y</sub>, C<sub>z</sub>} and S given by the user through the interface * {@link DragSensitive} * * @author Édouard Delente * @author Fabien Maussion * @author Véronique Pommier-Maurussane * @author Pascal Parraud */ public class DragForce extends AbstractForceModel { /** Atmospheric model. */ private final Atmosphere atmosphere; /** Spacecraft. */ private final DragSensitive spacecraft; /** Simple constructor. * @param atmosphere atmospheric model * @param spacecraft the object physical and geometrical information */ public DragForce(final Atmosphere atmosphere, final DragSensitive spacecraft) { this.atmosphere = atmosphere; this.spacecraft = spacecraft; } /** Compute the contribution of the drag to the perturbing acceleration. * @param s the current state information : date, kinematics, attitude * @param adder object where the contribution should be added * @exception OrekitException if some specific error occurs */ public void addContribution(final SpacecraftState s, final TimeDerivativesEquations adder) throws OrekitException { final AbsoluteDate date = s.getDate(); final Frame frame = s.getFrame(); final Vector3D position = s.getPVCoordinates().getPosition(); final double rho = atmosphere.getDensity(date, position, frame); final Vector3D vAtm = atmosphere.getVelocity(date, position, frame); final Vector3D relativeVelocity = vAtm.subtract(s.getPVCoordinates().getVelocity()); // Addition of calculated acceleration to adder adder.addAcceleration(spacecraft.dragAcceleration(date, frame, position, s.getAttitude().getRotation(), s.getMass(), rho, relativeVelocity), frame); } @Override public <T extends RealFieldElement<T>> void addContribution(final FieldSpacecraftState<T> s, final FieldTimeDerivativesEquations<T> adder) throws OrekitException { final FieldAbsoluteDate<T> date = s.getDate(); final Frame frame = s.getFrame(); final FieldVector3D<T> position = s.getPVCoordinates().getPosition(); final T rho = atmosphere.getDensity(date, position, frame); final FieldVector3D<T> vAtm = atmosphere.getVelocity(date, position, frame); final FieldVector3D<T> relativeVelocity = s.getPVCoordinates().getVelocity().negate().add(vAtm); // Addition of calculated acceleration to adder adder.addAcceleration(spacecraft.dragAcceleration(date, frame, position, s.getAttitude().getRotation(), s.getMass(), rho, relativeVelocity), frame); } /** There are no discrete events for this model. * @return an empty array */ public Stream<EventDetector> getEventsDetectors() { return Stream.empty(); } @Override public <T extends RealFieldElement<T>> Stream<FieldEventDetector<T>> getFieldEventsDetectors(final Field<T> field) { return Stream.empty(); } /** {@inheritDoc} */ public ParameterDriver[] getParametersDrivers() { return spacecraft.getDragParametersDrivers(); } /** {@inheritDoc} */ public FieldVector3D<DerivativeStructure> accelerationDerivatives(final AbsoluteDate date, final Frame frame, final FieldVector3D<DerivativeStructure> position, final FieldVector3D<DerivativeStructure> velocity, final FieldRotation<DerivativeStructure> rotation, final DerivativeStructure mass) throws OrekitException { // retrieve derivation properties final DSFactory factory = mass.getFactory(); // get atmosphere properties in atmosphere own frame final Frame atmFrame = atmosphere.getFrame(); final Transform toBody = frame.getTransformTo(atmFrame, date); final FieldVector3D<DerivativeStructure> posBodyDS = toBody.transformPosition(position); final Vector3D posBody = posBodyDS.toVector3D(); final Vector3D vAtmBody = atmosphere.getVelocity(date, posBody, atmFrame); // estimate density model by finite differences and composition // the following implementation works only for first order derivatives. // this could be improved by adding a new method // getDensity(AbsoluteDate, DerivativeStructure, Frame) // to the Atmosphere interface if (factory.getCompiler().getOrder() > 1) { throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, factory.getCompiler().getOrder()); } final double delta = 1.0; final double x = posBody.getX(); final double y = posBody.getY(); final double z = posBody.getZ(); final double rho0 = atmosphere.getDensity(date, posBody, atmFrame); final double dRhodX = (atmosphere.getDensity(date, new Vector3D(x + delta, y, z), atmFrame) - rho0) / delta; final double dRhodY = (atmosphere.getDensity(date, new Vector3D(x, y + delta, z), atmFrame) - rho0) / delta; final double dRhodZ = (atmosphere.getDensity(date, new Vector3D(x, y, z + delta), atmFrame) - rho0) / delta; final double[] dXdQ = posBodyDS.getX().getAllDerivatives(); final double[] dYdQ = posBodyDS.getY().getAllDerivatives(); final double[] dZdQ = posBodyDS.getZ().getAllDerivatives(); final double[] rhoAll = new double[dXdQ.length]; rhoAll[0] = rho0; for (int i = 1; i < rhoAll.length; ++i) { rhoAll[i] = dRhodX * dXdQ[i] + dRhodY * dYdQ[i] + dRhodZ * dZdQ[i]; } final DerivativeStructure rho = factory.build(rhoAll); // we consider that at first order the atmosphere velocity in atmosphere frame // does not depend on local position; however atmosphere velocity in inertial // frame DOES depend on position since the transform between the frames depends // on it, due to central body rotation rate and velocity composition. // So we use the transform to get the correct partial derivatives on vAtm final FieldVector3D<DerivativeStructure> vAtmBodyDS = new FieldVector3D<>(factory.constant(vAtmBody.getX()), factory.constant(vAtmBody.getY()), factory.constant(vAtmBody.getZ())); final FieldPVCoordinates<DerivativeStructure> pvAtmBody = new FieldPVCoordinates<>(posBodyDS, vAtmBodyDS); final FieldPVCoordinates<DerivativeStructure> pvAtm = toBody.getInverse().transformPVCoordinates(pvAtmBody); // now we can compute relative velocity, it takes into account partial derivatives with respect to position final FieldVector3D<DerivativeStructure> relativeVelocity = pvAtm.getVelocity().subtract(velocity); // compute acceleration with all its partial derivatives return spacecraft.dragAcceleration(date, frame, position, rotation, mass, rho, relativeVelocity); } /** {@inheritDoc} */ public FieldVector3D<DerivativeStructure> accelerationDerivatives(final SpacecraftState s, final String paramName) throws OrekitException { complainIfNotSupported(paramName); final AbsoluteDate date = s.getDate(); final Frame frame = s.getFrame(); final Vector3D position = s.getPVCoordinates().getPosition(); final double rho = atmosphere.getDensity(date, position, frame); final Vector3D vAtm = atmosphere.getVelocity(date, position, frame); final Vector3D relativeVelocity = vAtm.subtract(s.getPVCoordinates().getVelocity()); // compute acceleration with all its partial derivatives return spacecraft.dragAcceleration(date, frame, position, s.getAttitude().getRotation(), s.getMass(), rho, relativeVelocity, paramName); } }