/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.propagation.semianalytical.dsst.utilities; /** Interpolation grid where a fixed number of points are * evenly spaced between the start and the end of the integration step. * <p> * The grid is adapted to the step considered, * meaning that for short steps, the grid will be dense, * while for long steps the points will be far away one from each other * </p> * * @author Nicolas Bernard */ public class FixedNumberInterpolationGrid implements InterpolationGrid { /** Number of points in the grid per step. */ private final int pointsPerStep; /** Constructor. * @param pointsPerStep number of points in the grid per step */ public FixedNumberInterpolationGrid(final int pointsPerStep) { this.pointsPerStep = pointsPerStep; } /** {@inheritDoc} */ @Override public double[] getGridPoints(final double stepStart, final double stepEnd) { final double[] grid = new double[pointsPerStep]; final double stepSize = (stepEnd - stepStart) / (pointsPerStep - 1); for (int i = 0; i < pointsPerStep; i++) { grid[i] = stepSize * i + stepStart; } return grid; } }