/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.forces.gravity.potential; import org.hipparchus.util.FastMath; import org.hipparchus.util.MathUtils; import org.orekit.errors.OrekitException; import org.orekit.time.AbsoluteDate; /** Simple implementation of {@link RawSphericalHarmonicsProvider} for pulsating gravity fields. * @author Luc Maisonobe * @since 6.0 */ class PulsatingSphericalHarmonics implements RawSphericalHarmonicsProvider { /** Underlying part of the field. */ private final RawSphericalHarmonicsProvider provider; /** Pulsation (rad/s). */ private final double pulsation; /** Cosine component of the cosine coefficients. */ private final double[][] cosC; /** Sine component of the cosine coefficients. */ private final double[][] sinC; /** Cosine component of the sine coefficients. */ private final double[][] cosS; /** Sine component of the sine coefficients. */ private final double[][] sinS; /** Simple constructor. * @param provider underlying part of the field * @param period period of the pulsation (s) * @param cosC cosine component of the cosine coefficients * @param sinC sine component of the cosine coefficients * @param cosS cosine component of the sine coefficients * @param sinS sine component of the sine coefficients */ PulsatingSphericalHarmonics(final RawSphericalHarmonicsProvider provider, final double period, final double[][] cosC, final double[][] sinC, final double[][] cosS, final double[][] sinS) { this.provider = provider; this.pulsation = MathUtils.TWO_PI / period; this.cosC = cosC; this.sinC = sinC; this.cosS = cosS; this.sinS = sinS; } /** {@inheritDoc} */ public int getMaxDegree() { return provider.getMaxDegree(); } /** {@inheritDoc} */ public int getMaxOrder() { return provider.getMaxOrder(); } /** {@inheritDoc} */ public double getMu() { return provider.getMu(); } /** {@inheritDoc} */ public double getAe() { return provider.getAe(); } /** {@inheritDoc} */ public AbsoluteDate getReferenceDate() { return provider.getReferenceDate(); } /** {@inheritDoc} */ public double getOffset(final AbsoluteDate date) { return provider.getOffset(date); } /** {@inheritDoc} */ public TideSystem getTideSystem() { return provider.getTideSystem(); } @Override public RawSphericalHarmonics onDate(final AbsoluteDate date) throws OrekitException { //raw (constant) harmonics final RawSphericalHarmonics raw = provider.onDate(date); //phase angle, will loose precision for large offsets final double alpha = pulsation * getOffset(date); //pre-compute transcendental functions final double cAlpha = FastMath.cos(alpha); final double sAlpha = FastMath.sin(alpha); return new RawSphericalHarmonics() { @Override public AbsoluteDate getDate() { return date; } /** {@inheritDoc} */ public double getRawCnm(final int n, final int m) throws OrekitException { // retrieve the underlying part of the coefficient double cnm = raw.getRawCnm(n, m); if (n < cosC.length && m < cosC[n].length) { // add pulsation cnm += cosC[n][m] * cAlpha + sinC[n][m] * sAlpha; } return cnm; } /** {@inheritDoc} */ public double getRawSnm(final int n, final int m) throws OrekitException { // retrieve the constant part of the coefficient double snm = raw.getRawSnm(n, m); if (n < cosS.length && m < cosS[n].length) { // add pulsation snm += cosS[n][m] * cAlpha + sinS[n][m] * sAlpha; } return snm; } }; } }