/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.frames; import org.hipparchus.analysis.UnivariateFunction; import org.hipparchus.analysis.solvers.BracketingNthOrderBrentSolver; import org.hipparchus.analysis.solvers.UnivariateSolver; import org.hipparchus.exception.MathRuntimeException; import org.hipparchus.geometry.euclidean.threed.Rotation; import org.hipparchus.geometry.euclidean.threed.Vector3D; import org.hipparchus.util.FastMath; import org.hipparchus.util.MathUtils; import org.orekit.bodies.BodyShape; import org.orekit.bodies.GeodeticPoint; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitExceptionWrapper; import org.orekit.time.AbsoluteDate; import org.orekit.utils.Constants; import org.orekit.utils.PVCoordinates; import org.orekit.utils.PVCoordinatesProvider; import org.orekit.utils.TimeStampedPVCoordinates; /** Topocentric frame. * <p>Frame associated to a position near the surface of a body shape.</p> * <p> * The origin of the frame is at the defining {@link GeodeticPoint geodetic point} * location, and the right-handed canonical trihedra is: * </p> * <ul> * <li>X axis in the local horizontal plane (normal to zenith direction) and * following the local parallel towards East</li> * <li>Y axis in the horizontal plane (normal to zenith direction) and * following the local meridian towards North</li> * <li>Z axis towards Zenith direction</li> * </ul> * @author Véronique Pommier-Maurussane */ public class TopocentricFrame extends Frame implements PVCoordinatesProvider { /** Serializable UID. */ private static final long serialVersionUID = -5997915708080966466L; /** Body shape on which the local point is defined. */ private final BodyShape parentShape; /** Point where the topocentric frame is defined. */ private final GeodeticPoint point; /** Simple constructor. * @param parentShape body shape on which the local point is defined * @param point local surface point where topocentric frame is defined * @param name the string representation */ public TopocentricFrame(final BodyShape parentShape, final GeodeticPoint point, final String name) { super(parentShape.getBodyFrame(), new Transform(AbsoluteDate.J2000_EPOCH, new Transform(AbsoluteDate.J2000_EPOCH, parentShape.transform(point).negate()), new Transform(AbsoluteDate.J2000_EPOCH, new Rotation(point.getEast(), point.getZenith(), Vector3D.PLUS_I, Vector3D.PLUS_K), Vector3D.ZERO)), name, false); this.parentShape = parentShape; this.point = point; } /** Get the body shape on which the local point is defined. * @return body shape on which the local point is defined */ public BodyShape getParentShape() { return parentShape; } /** Get the surface point defining the origin of the frame. * @return surface point defining the origin of the frame */ public GeodeticPoint getPoint() { return point; } /** Get the zenith direction of topocentric frame, expressed in parent shape frame. * <p>The zenith direction is defined as the normal to local horizontal plane.</p> * @return unit vector in the zenith direction * @see #getNadir() */ public Vector3D getZenith() { return point.getZenith(); } /** Get the nadir direction of topocentric frame, expressed in parent shape frame. * <p>The nadir direction is the opposite of zenith direction.</p> * @return unit vector in the nadir direction * @see #getZenith() */ public Vector3D getNadir() { return point.getNadir(); } /** Get the north direction of topocentric frame, expressed in parent shape frame. * <p>The north direction is defined in the horizontal plane * (normal to zenith direction) and following the local meridian.</p> * @return unit vector in the north direction * @see #getSouth() */ public Vector3D getNorth() { return point.getNorth(); } /** Get the south direction of topocentric frame, expressed in parent shape frame. * <p>The south direction is the opposite of north direction.</p> * @return unit vector in the south direction * @see #getNorth() */ public Vector3D getSouth() { return point.getSouth(); } /** Get the east direction of topocentric frame, expressed in parent shape frame. * <p>The east direction is defined in the horizontal plane * in order to complete direct triangle (east, north, zenith).</p> * @return unit vector in the east direction * @see #getWest() */ public Vector3D getEast() { return point.getEast(); } /** Get the west direction of topocentric frame, expressed in parent shape frame. * <p>The west direction is the opposite of east direction.</p> * @return unit vector in the west direction * @see #getEast() */ public Vector3D getWest() { return point.getWest(); } /** Get the elevation of a point with regards to the local point. * <p>The elevation is the angle between the local horizontal and * the direction from local point to given point.</p> * @param extPoint point for which elevation shall be computed * @param frame frame in which the point is defined * @param date computation date * @return elevation of the point * @exception OrekitException if frames transformations cannot be computed */ public double getElevation(final Vector3D extPoint, final Frame frame, final AbsoluteDate date) throws OrekitException { // Transform given point from given frame to topocentric frame final Transform t = frame.getTransformTo(this, date); final Vector3D extPointTopo = t.transformPosition(extPoint); // Elevation angle is PI/2 - angle between zenith and given point direction return extPointTopo.getDelta(); } /** Get the azimuth of a point with regards to the topocentric frame center point. * <p>The azimuth is the angle between the North direction at local point and * the projection in local horizontal plane of the direction from local point * to given point. Azimuth angles are counted clockwise, i.e positive towards the East.</p> * @param extPoint point for which elevation shall be computed * @param frame frame in which the point is defined * @param date computation date * @return azimuth of the point * @exception OrekitException if frames transformations cannot be computed */ public double getAzimuth(final Vector3D extPoint, final Frame frame, final AbsoluteDate date) throws OrekitException { // Transform given point from given frame to topocentric frame final Transform t = getTransformTo(frame, date).getInverse(); final Vector3D extPointTopo = t.transformPosition(extPoint); // Compute azimuth double azimuth = FastMath.atan2(extPointTopo.getX(), extPointTopo.getY()); if (azimuth < 0.) { azimuth += MathUtils.TWO_PI; } return azimuth; } /** Get the range of a point with regards to the topocentric frame center point. * @param extPoint point for which range shall be computed * @param frame frame in which the point is defined * @param date computation date * @return range (distance) of the point * @exception OrekitException if frames transformations cannot be computed */ public double getRange(final Vector3D extPoint, final Frame frame, final AbsoluteDate date) throws OrekitException { // Transform given point from given frame to topocentric frame final Transform t = frame.getTransformTo(this, date); final Vector3D extPointTopo = t.transformPosition(extPoint); // Compute range return extPointTopo.getNorm(); } /** Get the range rate of a point with regards to the topocentric frame center point. * @param extPV point/velocity for which range rate shall be computed * @param frame frame in which the point is defined * @param date computation date * @return range rate of the point (positive if point departs from frame) * @exception OrekitException if frames transformations cannot be computed */ public double getRangeRate(final PVCoordinates extPV, final Frame frame, final AbsoluteDate date) throws OrekitException { // Transform given point from given frame to topocentric frame final Transform t = frame.getTransformTo(this, date); final PVCoordinates extPVTopo = t.transformPVCoordinates(extPV); // Compute range rate (doppler) : relative rate along the line of sight return Vector3D.dotProduct(extPVTopo.getPosition(), extPVTopo.getVelocity()) / extPVTopo.getPosition().getNorm(); } /** * Compute the limit visibility point for a satellite in a given direction. * <p> * This method can be used to compute visibility circles around ground stations * for example, using a simple loop on azimuth, with either a fixed elevation * or an elevation that depends on azimuth to take ground masks into account. * </p> * @param radius satellite distance to Earth center * @param azimuth pointing azimuth from station * @param elevation pointing elevation from station * @return limit visibility point for the satellite * @throws OrekitException if point cannot be found */ public GeodeticPoint computeLimitVisibilityPoint(final double radius, final double azimuth, final double elevation) throws OrekitException { try { // convergence threshold on point position: 1mm final double deltaP = 0.001; final UnivariateSolver solver = new BracketingNthOrderBrentSolver(deltaP / Constants.WGS84_EARTH_EQUATORIAL_RADIUS, deltaP, deltaP, 5); // find the distance such that a point in the specified direction and at the solved-for // distance is exactly at the specified radius final double distance = solver.solve(1000, new UnivariateFunction() { /** {@inheritDoc} */ public double value(final double x) { try { final GeodeticPoint gp = pointAtDistance(azimuth, elevation, x); return parentShape.transform(gp).getNorm() - radius; } catch (OrekitException oe) { throw new OrekitExceptionWrapper(oe); } } }, 0, 2 * radius); // return the limit point return pointAtDistance(azimuth, elevation, distance); } catch (MathRuntimeException mrte) { throw new OrekitException(mrte); } catch (OrekitExceptionWrapper lwe) { throw lwe.getException(); } } /** Compute the point observed from the station at some specified distance. * @param azimuth pointing azimuth from station * @param elevation pointing elevation from station * @param distance distance to station * @return observed point * @exception OrekitException if point cannot be computed */ public GeodeticPoint pointAtDistance(final double azimuth, final double elevation, final double distance) throws OrekitException { final double cosAz = FastMath.cos(azimuth); final double sinAz = FastMath.sin(azimuth); final double cosEl = FastMath.cos(elevation); final double sinEl = FastMath.sin(elevation); final Vector3D observed = new Vector3D(distance * cosEl * sinAz, distance * cosEl * cosAz, distance * sinEl); return parentShape.transform(observed, this, AbsoluteDate.J2000_EPOCH); } /** Get the {@link PVCoordinates} of the topocentric frame origin in the selected frame. * @param date current date * @param frame the frame where to define the position * @return position/velocity of the topocentric frame origin (m and m/s) * @exception OrekitException if position cannot be computed in given frame */ public TimeStampedPVCoordinates getPVCoordinates(final AbsoluteDate date, final Frame frame) throws OrekitException { return getTransformTo(frame, date).transformPVCoordinates(new TimeStampedPVCoordinates(date, Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO)); } }