/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.propagation.events; import org.hipparchus.RealFieldElement; import org.hipparchus.util.FastMath; import org.hipparchus.util.MathUtils; import org.orekit.errors.OrekitException; import org.orekit.frames.Frame; import org.orekit.orbits.FieldOrbit; import org.orekit.orbits.KeplerianOrbit; import org.orekit.orbits.Orbit; import org.orekit.orbits.OrbitType; import org.orekit.orbits.PositionAngle; import org.orekit.propagation.FieldSpacecraftState; import org.orekit.propagation.events.handlers.FieldEventHandler; import org.orekit.propagation.events.handlers.FieldStopOnIncreasing; /** Finder for node crossing events. * <p>This class finds equator crossing events (i.e. ascending * or descending node crossing).</p> * <p>The default implementation behavior is to {@link * org.orekit.propagation.events.handlers.FieldEventHandler.Action#CONTINUE continue} * propagation at descending node crossing and to {@link * org.orekit.propagation.events.handlers.FieldEventHandler.Action#STOP stop} propagation * at ascending node crossing. This can be changed by calling * {@link #withHandler(FieldEventHandler)} after construction.</p> * <p>Beware that node detection will fail for almost equatorial orbits. If * for example a node detector is used to trigger an {@link * org.orekit.forces.maneuvers.ImpulseManeuver ImpulseManeuver} and the maneuver * turn the orbit plane to equator, then the detector may completely fail just * after the maneuver has been performed! This is a real case that has been * encountered during validation ...</p> * @see org.orekit.propagation.FieldPropagator#addEventDetector(FieldEventDetector) * @author Luc Maisonobe */ public class FieldNodeDetector<T extends RealFieldElement<T>> extends FieldAbstractDetector<FieldNodeDetector<T>, T> { /** Frame in which the equator is defined. */ private final Frame frame; /** Build a new instance. * <p>The orbit is used only to set an upper bound for the max check interval * to period/3 and to set the convergence threshold according to orbit size.</p> * @param orbit initial orbit * @param frame frame in which the equator is defined (typical * values are {@link org.orekit.frames.FramesFactory#getEME2000() EME<sub>2000</sub>} or * {@link org.orekit.frames.FramesFactory#getITRF(org.orekit.utils.IERSConventions, boolean) ITRF}) */ public FieldNodeDetector(final FieldOrbit<T> orbit, final Frame frame) { this(orbit.getKeplerianPeriod().multiply(1.0e-13), orbit, frame); } /** Build a new instance. * <p>The orbit is used only to set an upper bound for the max check interval * to period/3.</p> * @param threshold convergence threshold (s) * @param orbit initial orbit * @param frame frame in which the equator is defined (typical * values are {@link org.orekit.frames.FramesFactory#getEME2000() EME<sub>2000</sub>} or * {@link org.orekit.frames.FramesFactory#getITRF(org.orekit.utils.IERSConventions, boolean) ITRF}) */ public FieldNodeDetector(final T threshold, final FieldOrbit<T> orbit, final Frame frame) { this(orbit.getA().getField().getZero().add(2 * estimateNodesTimeSeparation(orbit.toOrbit()) / 3), threshold, DEFAULT_MAX_ITER, new FieldStopOnIncreasing<FieldNodeDetector<T>, T>(), frame); } /** Private constructor with full parameters. * <p> * This constructor is private as users are expected to use the builder * API with the various {@code withXxx()} methods to set up the instance * in a readable manner without using a huge amount of parameters. * </p> * @param maxCheck maximum checking interval (s) * @param threshold convergence threshold (s) * @param maxIter maximum number of iterations in the event time search * @param handler event handler to call at event occurrences * @param frame frame in which the equator is defined (typical * values are {@link org.orekit.frames.FramesFactory#getEME2000() EME<sub>2000</sub>} or * {@link org.orekit.frames.FramesFactory#getITRF(org.orekit.utils.IERSConventions, boolean) ITRF}) * @since 6.1 */ private FieldNodeDetector(final T maxCheck, final T threshold, final int maxIter, final FieldEventHandler<? super FieldNodeDetector<T>, T> handler, final Frame frame) { super(maxCheck, threshold, maxIter, handler); this.frame = frame; } /** {@inheritDoc} */ @Override protected FieldNodeDetector<T> create(final T newMaxCheck, final T newThreshold, final int newMaxIter, final FieldEventHandler<? super FieldNodeDetector<T>, T> newHandler) { return new FieldNodeDetector<T>(newMaxCheck, newThreshold, newMaxIter, newHandler, frame); } /** Find time separation between nodes. * <p> * The estimation of time separation is based on Keplerian motion, it is only * used as a rough guess for a safe setting of default max check interval for * event detection. * </p> * @param orbit initial orbit * @return minimum time separation between nodes */ private static double estimateNodesTimeSeparation(final Orbit orbit) { final KeplerianOrbit keplerian = (KeplerianOrbit) OrbitType.KEPLERIAN.convertType(orbit); // mean anomaly of ascending node final double ascendingM = new KeplerianOrbit(keplerian.getA(), keplerian.getE(), keplerian.getI(), keplerian.getPerigeeArgument(), keplerian.getRightAscensionOfAscendingNode(), -keplerian.getPerigeeArgument(), PositionAngle.TRUE, keplerian.getFrame(), keplerian.getDate(), keplerian.getMu()).getMeanAnomaly(); // mean anomaly of descending node final double descendingM = new KeplerianOrbit(keplerian.getA(), keplerian.getE(), keplerian.getI(), keplerian.getPerigeeArgument(), keplerian.getRightAscensionOfAscendingNode(), FastMath.PI - keplerian.getPerigeeArgument(), PositionAngle.TRUE, keplerian.getFrame(), keplerian.getDate(), keplerian.getMu()).getMeanAnomaly(); // differences between mean anomalies final double delta1 = MathUtils.normalizeAngle(ascendingM, descendingM + FastMath.PI) - descendingM; final double delta2 = 2 * FastMath.PI - delta1; // minimum time separation between the two nodes return FastMath.min(delta1, delta2) / keplerian.getKeplerianMeanMotion(); } /** Get the frame in which the equator is defined. * @return the frame in which the equator is defined */ public Frame getFrame() { return frame; } /** Compute the value of the switching function. * This function computes the Z position in the defined frame. * @param s the current state information: date, kinematics, attitude * @return value of the switching function * @exception OrekitException if some specific error occurs */ public T g(final FieldSpacecraftState<T> s) throws OrekitException { return s.getPVCoordinates(frame).getPosition().getZ(); } // public NodeDetector toNoField() { // return new NodeDetector(getThreshold().getReal(), orbit.toOrbit(), frame); // } }