/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.propagation.conversion; import org.hipparchus.analysis.MultivariateVectorFunction; import org.hipparchus.linear.MatrixUtils; import org.hipparchus.linear.RealMatrix; import org.hipparchus.linear.RealVector; import org.hipparchus.optim.nonlinear.vector.leastsquares.MultivariateJacobianFunction; import org.hipparchus.util.Pair; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitExceptionWrapper; import org.orekit.propagation.Propagator; import org.orekit.propagation.SpacecraftState; import org.orekit.utils.PVCoordinates; import org.orekit.utils.ParameterDriver; /** Propagator converter using finite differences to compute the jacobian. * @author Pascal Parraud * @since 6.0 */ public class FiniteDifferencePropagatorConverter extends AbstractPropagatorConverter { /** Propagator builder. */ private final PropagatorBuilder builder; /** Simple constructor. * @param factory builder for adapted propagator * @param threshold absolute threshold for optimization algorithm * @param maxIterations maximum number of iterations for fitting */ public FiniteDifferencePropagatorConverter(final PropagatorBuilder factory, final double threshold, final int maxIterations) { super(factory, threshold, maxIterations); this.builder = factory; } /** {@inheritDoc} */ protected MultivariateVectorFunction getObjectiveFunction() { return new ObjectiveFunction(); } /** {@inheritDoc} */ protected MultivariateJacobianFunction getModel() { return new ObjectiveFunctionJacobian(); } /** Internal class for computing position/velocity at sample points. */ private class ObjectiveFunction implements MultivariateVectorFunction { /** {@inheritDoc} */ public double[] value(final double[] arg) throws IllegalArgumentException, OrekitExceptionWrapper { try { final Propagator propagator = builder.buildPropagator(arg); final double[] eval = new double[getTargetSize()]; int k = 0; for (SpacecraftState state : getSample()) { final PVCoordinates pv = propagator.getPVCoordinates(state.getDate(), getFrame()); if (Double.isNaN(pv.getMomentum().getNorm())) { propagator.getPVCoordinates(state.getDate(), getFrame()); } eval[k++] = pv.getPosition().getX(); eval[k++] = pv.getPosition().getY(); eval[k++] = pv.getPosition().getZ(); if (!isOnlyPosition()) { eval[k++] = pv.getVelocity().getX(); eval[k++] = pv.getVelocity().getY(); eval[k++] = pv.getVelocity().getZ(); } } return eval; } catch (OrekitException ex) { throw new OrekitExceptionWrapper(ex); } } } /** Internal class for computing position/velocity Jacobian at sample points. */ private class ObjectiveFunctionJacobian implements MultivariateJacobianFunction { /** {@inheritDoc} */ public Pair<RealVector, RealMatrix> value(final RealVector point) throws IllegalArgumentException, OrekitExceptionWrapper { final double[] arg = point.toArray(); final MultivariateVectorFunction f = new ObjectiveFunction(); final double[] increment = new double[arg.length]; int index = 0; for (final ParameterDriver driver : builder.getOrbitalParametersDrivers().getDrivers()) { if (driver.isSelected()) { increment[index++] = driver.getScale(); } } for (final ParameterDriver driver : builder.getPropagationParametersDrivers().getDrivers()) { if (driver.isSelected()) { increment[index++] = driver.getScale(); } } final double[][] jacob = new double[getTargetSize()][arg.length]; final double[] eval = f.value(arg); final double[] arg1 = new double[arg.length]; for (int j = 0; j < arg.length; j++) { System.arraycopy(arg, 0, arg1, 0, arg.length); arg1[j] += increment[j]; final double[] eval1 = f.value(arg1); for (int t = 0; t < eval.length; t++) { jacob[t][j] = (eval1[t] - eval[t]) / increment[j]; } } return new Pair<RealVector, RealMatrix>(MatrixUtils.createRealVector(eval), MatrixUtils.createRealMatrix(jacob)); } } }