/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.attitudes; import org.hipparchus.Field; import org.hipparchus.RealFieldElement; import org.hipparchus.geometry.euclidean.threed.FieldVector3D; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitMessages; import org.orekit.frames.Frame; import org.orekit.time.FieldAbsoluteDate; import org.orekit.utils.FieldAngularCoordinates; import org.orekit.utils.FieldPVCoordinates; import org.orekit.utils.FieldPVCoordinatesProvider; import org.orekit.utils.TimeStampedFieldPVCoordinates; /** * Base class for ground pointing attitude providers. * * <p>This class is a basic model for different kind of ground pointing * attitude providers, such as : body center pointing, nadir pointing, * target pointing, etc... * </p> * <p> * The object <code>GroundPointing</code> is guaranteed to be immutable. * </p> * @see AttitudeProvider * @author Véronique Pommier-Maurussane */ public abstract class FieldGroundPointing<T extends RealFieldElement<T>> implements FieldAttitudeProvider<T> { /** Inertial frame. */ private final Frame inertialFrame; /** Body frame. */ private final Frame bodyFrame; /** Default constructor. * Build a new instance with arbitrary default elements. * @param inertialFrame frame in which orbital velocities are computed * @param bodyFrame the frame that rotates with the body * @exception OrekitException if the first frame specified is not a pseudo-inertial frame * @since 7.1 */ protected FieldGroundPointing(final Frame inertialFrame, final Frame bodyFrame) throws OrekitException { if (!inertialFrame.isPseudoInertial()) { throw new OrekitException(OrekitMessages.NON_PSEUDO_INERTIAL_FRAME, inertialFrame.getName()); } this.inertialFrame = inertialFrame; this.bodyFrame = bodyFrame; } /** J axis. * @param field field used by default * @return J axis in FieldPVCoordinates * */ private FieldPVCoordinates<T> PLUS_J(final Field<T> field) { return new FieldPVCoordinates<T>(new FieldVector3D<T>(field.getZero(), field.getOne(), field.getZero()), new FieldVector3D<T>(field.getZero(), field.getZero(), field.getZero()), new FieldVector3D<T>(field.getZero(), field.getZero(), field.getZero())); } /** K axis. * @param field field used by default * @return K axis in FieldPVCoordinates * */ private FieldPVCoordinates<T> PLUS_K (final Field<T> field) { return new FieldPVCoordinates<T>(new FieldVector3D<T>(field.getZero(), field.getZero(), field.getOne()), new FieldVector3D<T>(field.getZero(), field.getZero(), field.getZero()), new FieldVector3D<T>(field.getZero(), field.getZero(), field.getZero())); } /** Get the body frame. * @return body frame */ public Frame getBodyFrame() { return bodyFrame; } /** Compute the target point position/velocity in specified frame. * @param pvProv provider for PV coordinates * @param date date at which target point is requested * @param frame frame in which observed ground point should be provided * @return observed ground point position (element 0) and velocity (at index 1) * in specified frame * @throws OrekitException if some specific error occurs, * such as no target reached */ protected abstract TimeStampedFieldPVCoordinates<T> getTargetPV(FieldPVCoordinatesProvider<T> pvProv, FieldAbsoluteDate<T> date, Frame frame) throws OrekitException; /** {@inheritDoc} */ public FieldAttitude<T> getAttitude(final FieldPVCoordinatesProvider<T> pvProv, final FieldAbsoluteDate<T> date, final Frame frame) throws OrekitException { // satellite-target relative vector final FieldPVCoordinates<T> pva = pvProv.getPVCoordinates(date, inertialFrame); final TimeStampedFieldPVCoordinates<T> delta = new TimeStampedFieldPVCoordinates<T> (date, pva, getTargetPV(pvProv, date, inertialFrame)); // spacecraft and target should be away from each other to define a pointing direction if (delta.getPosition().getNorm().getReal() == 0.0) { throw new OrekitException(OrekitMessages.SATELLITE_COLLIDED_WITH_TARGET); } // attitude definition: // line of sight -> +z satellite axis, // orbital velocity -> (z, +x) half plane final FieldVector3D<T> p = pva.getPosition(); final FieldVector3D<T> v = pva.getVelocity(); final FieldVector3D<T> a = pva.getAcceleration(); final T r2 = p.getNormSq(); final T r = r2.sqrt(); final FieldVector3D<T> keplerianJerk = new FieldVector3D<T>(FieldVector3D.dotProduct(p, v).multiply(-3).divide(r2), a, a.getNorm().divide(r).multiply(-1), v); final FieldPVCoordinates<T> velocity = new FieldPVCoordinates<T>(v, a, keplerianJerk); final FieldPVCoordinates<T> los = delta.normalize(); final FieldPVCoordinates<T> normal = (delta.crossProduct(velocity)).normalize(); final FieldAngularCoordinates<T> ac = new FieldAngularCoordinates<T>(los, normal, PLUS_K(r.getField()), PLUS_J(r.getField()), 1.0e-6); if (frame != inertialFrame) { // prepend transform from specified frame to inertial frame //TODO ac = ac.addOffset(frame.getTransformTo(inertialFrame, date.toAbsoluteDate()).getAngular()); } // build the attitude return new FieldAttitude<T>(date, frame, ac); } }