/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.attitudes; import java.util.ArrayList; import java.util.List; import org.hipparchus.geometry.euclidean.threed.Line; import org.hipparchus.geometry.euclidean.threed.Vector3D; import org.orekit.bodies.BodyShape; import org.orekit.bodies.GeodeticPoint; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitMessages; import org.orekit.frames.Frame; import org.orekit.frames.Transform; import org.orekit.time.AbsoluteDate; import org.orekit.utils.CartesianDerivativesFilter; import org.orekit.utils.Constants; import org.orekit.utils.PVCoordinatesProvider; import org.orekit.utils.TimeStampedPVCoordinates; /** * This class provides a default attitude provider. * <p> * The attitude pointing law is defined by an attitude provider and * the satellite axis vector chosen for pointing. * <p> * @author Véronique Pommier-Maurussane */ public class LofOffsetPointing extends GroundPointing { /** Serializable UID. */ private static final long serialVersionUID = 20150529L; /** Rotation from local orbital frame. */ private final AttitudeProvider attitudeLaw; /** Body shape. */ private final BodyShape shape; /** Chosen satellite axis for pointing, given in satellite frame. */ private final Vector3D satPointingVector; /** Creates new instance. * @param inertialFrame frame in which orbital velocities are computed * @param shape Body shape * @param attLaw Attitude law * @param satPointingVector satellite vector defining the pointing direction * @exception OrekitException if the frame specified is not a pseudo-inertial frame * @since 7.1 */ public LofOffsetPointing(final Frame inertialFrame, final BodyShape shape, final AttitudeProvider attLaw, final Vector3D satPointingVector) throws OrekitException { super(inertialFrame, shape.getBodyFrame()); this.shape = shape; this.attitudeLaw = attLaw; this.satPointingVector = satPointingVector; } /** {@inheritDoc} */ @Override public Attitude getAttitude(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) throws OrekitException { return attitudeLaw.getAttitude(pvProv, date, frame); } /** {@inheritDoc} */ protected TimeStampedPVCoordinates getTargetPV(final PVCoordinatesProvider pvProv, final AbsoluteDate date, final Frame frame) throws OrekitException { // transform from specified reference frame to spacecraft frame final Transform refToSc = new Transform(date, new Transform(date, pvProv.getPVCoordinates(date, frame).negate()), new Transform(date, attitudeLaw.getAttitude(pvProv, date, frame).getOrientation())); // transform from specified reference frame to body frame final Transform refToBody = frame.getTransformTo(shape.getBodyFrame(), date); // sample intersection points in current date neighborhood final Transform scToBody = new Transform(date, refToSc.getInverse(), refToBody); final double h = 0.1; final List<TimeStampedPVCoordinates> sample = new ArrayList<TimeStampedPVCoordinates>(); sample.add(losIntersectionWithBody(scToBody.shiftedBy(-h))); sample.add(losIntersectionWithBody(scToBody)); sample.add(losIntersectionWithBody(scToBody.shiftedBy(+h))); // use interpolation to compute properly the time-derivatives final TimeStampedPVCoordinates targetBody = TimeStampedPVCoordinates.interpolate(date, CartesianDerivativesFilter.USE_P, sample); // convert back to caller specified frame return refToBody.getInverse().transformPVCoordinates(targetBody); } /** Compute line of sight intersection with body. * @param scToBody transform from spacecraft frame to body frame * @return intersection point in body frame (only the position is set!) * @exception OrekitException if line of sight does not intersect body */ private TimeStampedPVCoordinates losIntersectionWithBody(final Transform scToBody) throws OrekitException { // compute satellite pointing axis and position/velocity in body frame final Vector3D pointingBodyFrame = scToBody.transformVector(satPointingVector); final Vector3D pBodyFrame = scToBody.transformPosition(Vector3D.ZERO); // Line from satellite following pointing direction // we use arbitrarily the Earth radius as a scaling factor, it could be anything else final Line pointingLine = new Line(pBodyFrame, pBodyFrame.add(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, pointingBodyFrame), 1.0e-10); // Intersection with body shape final GeodeticPoint gpIntersection = shape.getIntersectionPoint(pointingLine, pBodyFrame, shape.getBodyFrame(), scToBody.getDate()); final Vector3D pIntersection = (gpIntersection == null) ? null : shape.transform(gpIntersection); // Check there is an intersection and it is not in the reverse pointing direction if ((pIntersection == null) || (Vector3D.dotProduct(pIntersection.subtract(pBodyFrame), pointingBodyFrame) < 0)) { throw new OrekitException(OrekitMessages.ATTITUDE_POINTING_LAW_DOES_NOT_POINT_TO_GROUND); } return new TimeStampedPVCoordinates(scToBody.getDate(), pIntersection, Vector3D.ZERO, Vector3D.ZERO); } }