/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.propagation.events; import org.hipparchus.analysis.UnivariateFunction; import org.hipparchus.analysis.solvers.BracketedUnivariateSolver; import org.hipparchus.analysis.solvers.BracketedUnivariateSolver.Interval; import org.hipparchus.analysis.solvers.BracketingNthOrderBrentSolver; import org.hipparchus.exception.MathRuntimeException; import org.hipparchus.util.FastMath; import org.hipparchus.util.Precision; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitExceptionWrapper; import org.orekit.errors.OrekitInternalError; import org.orekit.propagation.SpacecraftState; import org.orekit.propagation.events.handlers.EventHandler; import org.orekit.propagation.sampling.OrekitStepInterpolator; import org.orekit.time.AbsoluteDate; import java.io.Serializable; /** This class handles the state for one {@link EventDetector * event detector} during integration steps. * * <p>This class is heavily based on the class with the same name from the * Hipparchus library. The changes performed consist in replacing * raw types (double and double arrays) with space dynamics types * ({@link AbsoluteDate}, {@link SpacecraftState}).</p> * <p>Each time the propagator proposes a step, the event detector * should be checked. This class handles the state of one detector * during one propagation step, with references to the state at the * end of the preceding step. This information is used to determine if * the detector should trigger an event or not during the proposed * step (and hence the step should be reduced to ensure the event * occurs at a bound rather than inside the step).</p> * @author Luc Maisonobe * @param <T> class type for the generic version */ public class EventState<T extends EventDetector> implements Serializable { /** Serializable version identifier. */ private static final long serialVersionUID = 4489391420715269318L; /** Event detector. */ private T detector; /** Time of the previous call to g. */ private AbsoluteDate lastT; /** Value from the previous call to g. */ private double lastG; /** Time at the beginning of the step. */ private AbsoluteDate t0; /** Value of the event detector at the beginning of the step. */ private double g0; /** Simulated sign of g0 (we cheat when crossing events). */ private boolean g0Positive; /** Indicator of event expected during the step. */ private boolean pendingEvent; /** Occurrence time of the pending event. */ private AbsoluteDate pendingEventTime; /** * Time to stop propagation if the event is a stop event. Used to enable stopping at * an event and then restarting after that event. */ private AbsoluteDate stopTime; /** Time after the current event. */ private AbsoluteDate afterEvent; /** Value of the g function after the current event. */ private double afterG; /** The earliest time considered for events. */ private AbsoluteDate earliestTimeConsidered; /** Integration direction. */ private boolean forward; /** Variation direction around pending event. * (this is considered with respect to the integration direction) */ private boolean increasing; /** Simple constructor. * @param detector monitored event detector */ public EventState(final T detector) { this.detector = detector; // some dummy values ... lastT = AbsoluteDate.PAST_INFINITY; lastG = Double.NaN; t0 = null; g0 = Double.NaN; g0Positive = true; pendingEvent = false; pendingEventTime = null; stopTime = null; increasing = true; earliestTimeConsidered = null; afterEvent = null; afterG = Double.NaN; } /** Get the underlying event detector. * @return underlying event detector */ public T getEventDetector() { return detector; } /** Initialize event handler at the start of a propagation. * <p> * This method is called once at the start of the propagation. It * may be used by the event handler to initialize some internal data * if needed. * </p> * @param s0 initial state * @param t target time for the integration */ public void init(final SpacecraftState s0, final AbsoluteDate t) { detector.init(s0, t); lastT = AbsoluteDate.PAST_INFINITY; lastG = Double.NaN; } /** Compute the value of the switching function. * This function must be continuous (at least in its roots neighborhood), * as the integrator will need to find its roots to locate the events. * @param s the current state information: date, kinematics, attitude * @return value of the switching function * @exception OrekitException if some specific error occurs */ private double g(final SpacecraftState s) throws OrekitException { if (!s.getDate().equals(lastT)) { lastT = s.getDate(); lastG = detector.g(s); } return lastG; } /** Reinitialize the beginning of the step. * @param interpolator interpolator valid for the current step * @exception OrekitException if the event detector * value cannot be evaluated at the beginning of the step */ public void reinitializeBegin(final OrekitStepInterpolator interpolator) throws OrekitException { forward = interpolator.isForward(); final SpacecraftState s0 = interpolator.getPreviousState(); this.t0 = s0.getDate(); g0 = g(s0); while (g0 == 0) { // extremely rare case: there is a zero EXACTLY at interval start // we will use the sign slightly after step beginning to force ignoring this zero // try moving forward by half a convergence interval final double dt = (forward ? 0.5 : -0.5) * detector.getThreshold(); AbsoluteDate startDate = t0.shiftedBy(dt); // if convergence is too small move an ulp if (t0.equals(startDate)) { startDate = nextAfter(startDate); } t0 = startDate; g0 = g(interpolator.getInterpolatedState(t0)); } g0Positive = g0 > 0; // "last" event was increasing increasing = g0Positive; } /** Evaluate the impact of the proposed step on the event detector. * @param interpolator step interpolator for the proposed step * @return true if the event detector triggers an event before * the end of the proposed step (this implies the step should be * rejected) * @exception OrekitException if the switching function * cannot be evaluated * @exception MathRuntimeException if an event cannot be located */ public boolean evaluateStep(final OrekitStepInterpolator interpolator) throws OrekitException, MathRuntimeException { forward = interpolator.isForward(); final SpacecraftState s1 = interpolator.getCurrentState(); final AbsoluteDate t1 = s1.getDate(); final double dt = t1.durationFrom(t0); if (FastMath.abs(dt) < detector.getThreshold()) { // we cannot do anything on such a small step, don't trigger any events return false; } // number of points to check in the current step final int n = FastMath.max(1, (int) FastMath.ceil(FastMath.abs(dt) / detector.getMaxCheckInterval())); final double h = dt / n; AbsoluteDate ta = t0; double ga = g0; for (int i = 0; i < n; ++i) { // evaluate handler value at the end of the substep final AbsoluteDate tb = (i == n - 1) ? t1 : t0.shiftedBy((i + 1) * h); final double gb = g(interpolator.getInterpolatedState(tb)); // check events occurrence if (gb == 0.0 || (g0Positive ^ (gb > 0))) { // there is a sign change: an event is expected during this step if (findRoot(interpolator, ta, ga, tb, gb)) { return true; } } else { // no sign change: there is no event for now ta = tb; ga = gb; } } // no event during the whole step pendingEvent = false; pendingEventTime = null; return false; } /** * Find a root in a bracketing interval. * * <p> When calling this method one of the following must be true. Either ga == 0, gb * == 0, (ga < 0 and gb > 0), or (ga > 0 and gb < 0). * * @param interpolator that covers the interval. * @param ta earliest possible time for root. * @param ga g(ta). * @param tb latest possible time for root. * @param gb g(tb). * @return if a zero crossing was found. * @throws OrekitException if the event detector throws one */ private boolean findRoot(final OrekitStepInterpolator interpolator, final AbsoluteDate ta, final double ga, final AbsoluteDate tb, final double gb) throws OrekitException { // check there appears to be a root in [ta, tb] check(ga == 0.0 || gb == 0.0 || (ga > 0.0 && gb < 0.0) || (ga < 0.0 && gb > 0.0)); final double convergence = detector.getThreshold(); final int maxIterationCount = detector.getMaxIterationCount(); final BracketedUnivariateSolver<UnivariateFunction> solver = new BracketingNthOrderBrentSolver(0, convergence, 0, 5); // event time, just at or before the actual root. AbsoluteDate beforeRootT = null; double beforeRootG = Double.NaN; // time on the other side of the root. // Initialized the the loop below executes once. AbsoluteDate afterRootT = ta; double afterRootG = 0.0; // check for some conditions that the root finders don't like // these conditions cannot not happen in the loop below // the ga == 0.0 case is handled by the loop below if (ta.equals(tb)) { // both non-zero but times are the same. Probably due to reset state beforeRootT = ta; beforeRootG = ga; afterRootT = shiftedBy(beforeRootT, convergence); afterRootG = g(interpolator.getInterpolatedState(afterRootT)); } else if (ga != 0.0 && gb == 0.0) { // hard: ga != 0.0 and gb == 0.0 // look past gb by up to convergence to find next sign // throw an exception if g(t) = 0.0 in [tb, tb + convergence] beforeRootT = tb; beforeRootG = gb; afterRootT = shiftedBy(beforeRootT, convergence); afterRootG = g(interpolator.getInterpolatedState(afterRootT)); } else if (ga != 0.0) { final double newGa = g(interpolator.getInterpolatedState(ta)); if (ga > 0 != newGa > 0) { // both non-zero, step sign change at ta, possibly due to reset state beforeRootT = ta; beforeRootG = newGa; afterRootT = minTime(shiftedBy(beforeRootT, convergence), tb); afterRootG = g(interpolator.getInterpolatedState(afterRootT)); } } // loop to skip through "fake" roots, i.e. where g(t) = g'(t) = 0.0 // executed once if we didn't hit a special case above AbsoluteDate loopT = ta; double loopG = ga; while ((afterRootG == 0.0 || afterRootG > 0.0 == g0Positive) && strictlyAfter(afterRootT, tb)) { if (loopG == 0.0) { // ga == 0.0 and gb may or may not be 0.0 // handle the root at ta first beforeRootT = loopT; beforeRootG = loopG; afterRootT = minTime(shiftedBy(beforeRootT, convergence), tb); afterRootG = g(interpolator.getInterpolatedState(afterRootT)); } else { // both non-zero, the usual case, use a root finder. try { // time zero for evaluating the function f. Needs to be final final AbsoluteDate fT0 = loopT; final UnivariateFunction f = dt -> { try { return g(interpolator.getInterpolatedState(fT0.shiftedBy(dt))); } catch (OrekitException oe) { throw new OrekitExceptionWrapper(oe); } }; // tb as a double for use in f final double tbDouble = tb.durationFrom(fT0); if (forward) { final Interval interval = solver.solveInterval(maxIterationCount, f, 0, tbDouble); beforeRootT = fT0.shiftedBy(interval.getLeftAbscissa()); beforeRootG = interval.getLeftValue(); afterRootT = fT0.shiftedBy(interval.getRightAbscissa()); afterRootG = interval.getRightValue(); } else { final Interval interval = solver.solveInterval(maxIterationCount, f, tbDouble, 0); beforeRootT = fT0.shiftedBy(interval.getRightAbscissa()); beforeRootG = interval.getRightValue(); afterRootT = fT0.shiftedBy(interval.getLeftAbscissa()); afterRootG = interval.getLeftValue(); } } catch (OrekitExceptionWrapper oew) { throw oew.getException(); } } // tolerance is set to less than 1 ulp // assume tolerance is 1 ulp if (beforeRootT.equals(afterRootT)) { afterRootT = nextAfter(afterRootT); afterRootG = g(interpolator.getInterpolatedState(afterRootT)); } // check loop is making some progress check((forward && afterRootT.compareTo(beforeRootT) > 0) || (!forward && afterRootT.compareTo(beforeRootT) < 0)); // setup next iteration loopT = afterRootT; loopG = afterRootG; } // figure out the result of root finding, and return accordingly if (afterRootG == 0.0 || afterRootG > 0.0 == g0Positive) { // loop gave up and didn't find any crossing within this step return false; } else { // real crossing check(beforeRootT != null && !Double.isNaN(beforeRootG)); // variation direction, with respect to the integration direction increasing = !g0Positive; pendingEventTime = beforeRootT; stopTime = beforeRootG == 0.0 ? beforeRootT : afterRootT; pendingEvent = true; afterEvent = afterRootT; afterG = afterRootG; // check increasing set correctly check(afterG > 0 == increasing); check(increasing == gb >= ga); return true; } } /** * Get the next number after the given number in the current propagation direction. * * @param t input time * @return t +/- 1 ulp depending on the direction. */ private AbsoluteDate nextAfter(final AbsoluteDate t) { return t.shiftedBy(forward ? +Precision.EPSILON : -Precision.EPSILON); } /** Get the occurrence time of the event triggered in the current * step. * @return occurrence time of the event triggered in the current * step. */ public AbsoluteDate getEventDate() { return pendingEventTime; } /** * Try to accept the current history up to the given time. * * <p> It is not necessary to call this method before calling {@link * #doEvent(SpacecraftState)} with the same state. It is necessary to call this * method before you call {@link #doEvent(SpacecraftState)} on some other event * detector. * * @param state to try to accept. * @param interpolator to use to find the new root, if any. * @return if the event detector has an event it has not detected before that is on or * before the same time as {@code state}. In other words {@code false} means continue * on while {@code true} means stop and handle my event first. * @exception OrekitException if the g function throws one */ public boolean tryAdvance(final SpacecraftState state, final OrekitStepInterpolator interpolator) throws OrekitException { // check this is only called before a pending event. check(!(pendingEvent && strictlyAfter(pendingEventTime, state.getDate()))); final AbsoluteDate t = state.getDate(); // just found an event and we know the next time we want to search again if (strictlyAfter(t, earliestTimeConsidered)) { return false; } final double g = g(state); final boolean positive = g > 0; // check for new root, pendingEventTime may be null if there is not pending event if ((g == 0.0 && t.equals(pendingEventTime)) || positive == g0Positive) { // at a root we already found, or g function has expected sign t0 = t; g0 = g; // g0Positive is the same return false; } else { // found a root we didn't expect -> find precise location return findRoot(interpolator, t0, g0, t, g); } } /** * Notify the user's listener of the event. The event occurs wholly within this method * call including a call to {@link EventDetector#resetState(SpacecraftState)} * if necessary. * * @param state the state at the time of the event. This must be at the same time as * the current value of {@link #getEventDate()}. * @return the user's requested action and the new state if the action is {@link * org.orekit.propagation.events.handlers.EventHandler.Action#RESET_STATE Action.RESET_STATE}. * Otherwise the new state is {@code state}. The stop time indicates what time propagation * should stop if the action is {@link * org.orekit.propagation.events.handlers.EventHandler.Action#STOP Action.STOP}. * This guarantees the integration will stop on or after the root, so that integration * may be restarted safely. * @exception OrekitException if the event detector throws one */ public EventOccurrence doEvent(final SpacecraftState state) throws OrekitException { // check event is pending and is at the same time check(pendingEvent); check(state.getDate().equals(this.pendingEventTime)); final EventHandler.Action action = detector.eventOccurred(state, increasing == forward); final SpacecraftState newState; if (action == EventHandler.Action.RESET_STATE) { newState = detector.resetState(state); } else { newState = state; } // clear pending event pendingEvent = false; pendingEventTime = null; // setup for next search earliestTimeConsidered = afterEvent; t0 = afterEvent; g0 = afterG; g0Positive = increasing; // check g0Positive set correctly check(g0 == 0.0 || g0Positive == (g0 > 0)); return new EventOccurrence(action, newState, stopTime); } /** * Shift a time value along the current integration direction: {@link #forward}. * * @param t the time to shift. * @param delta the amount to shift. * @return t + delta if forward, else t - delta. If the result has to be rounded it * will be rounded to be before the true value of t + delta. */ private AbsoluteDate shiftedBy(final AbsoluteDate t, final double delta) { if (forward) { final AbsoluteDate ret = t.shiftedBy(delta); if (ret.durationFrom(t) > delta) { return ret.shiftedBy(-Precision.EPSILON); } else { return ret; } } else { final AbsoluteDate ret = t.shiftedBy(-delta); if (t.durationFrom(ret) > delta) { return ret.shiftedBy(+Precision.EPSILON); } else { return ret; } } } /** * Get the time that happens first along the current propagation direction: {@link * #forward}. * * @param a first time * @param b second time * @return min(a, b) if forward, else max (a, b) */ private AbsoluteDate minTime(final AbsoluteDate a, final AbsoluteDate b) { return (forward ^ (a.compareTo(b) > 0)) ? a : b; } /** * Check the ordering of two times. * * @param t1 the first time. * @param t2 the second time. * @return true if {@code t2} is strictly after {@code t1} in the propagation * direction. */ private boolean strictlyAfter(final AbsoluteDate t1, final AbsoluteDate t2) { if (t1 == null || t2 == null) { return false; } else { return forward ? t1.compareTo(t2) < 0 : t2.compareTo(t1) < 0; } } /** * Same as keyword assert, but throw a {@link MathRuntimeException}. * * @param condition to check * @throws MathRuntimeException if {@code condition} is false. */ private void check(final boolean condition) throws MathRuntimeException { if (!condition) { throw new OrekitInternalError(null); } } /** * Class to hold the data related to an event occurrence that is needed to decide how * to modify integration. */ public static class EventOccurrence { /** User requested action. */ private final EventHandler.Action action; /** New state for a reset action. */ private final SpacecraftState newState; /** The time to stop propagation if the action is a stop event. */ private final AbsoluteDate stopDate; /** * Create a new occurrence of an event. * * @param action the user requested action. * @param newState for a reset event. Should be the current state unless the * action is {@link Action#RESET_STATE}. * @param stopDate to stop propagation if the action is {@link Action#STOP}. Used * to move the stop time to just after the root. */ EventOccurrence(final EventHandler.Action action, final SpacecraftState newState, final AbsoluteDate stopDate) { this.action = action; this.newState = newState; this.stopDate = stopDate; } /** * Get the user requested action. * * @return the action. */ public EventHandler.Action getAction() { return action; } /** * Get the new state for a reset action. * * @return the new state. */ public SpacecraftState getNewState() { return newState; } /** * Get the new time for a stop action. * * @return when to stop propagation. */ public AbsoluteDate getStopDate() { return stopDate; } } }