/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.utils; import java.util.Collection; import org.hipparchus.Field; import org.hipparchus.RealFieldElement; import org.hipparchus.analysis.differentiation.DerivativeStructure; import org.hipparchus.analysis.interpolation.FieldHermiteInterpolator; import org.hipparchus.geometry.euclidean.threed.FieldRotation; import org.hipparchus.geometry.euclidean.threed.FieldVector3D; import org.hipparchus.geometry.euclidean.threed.RotationConvention; import org.hipparchus.util.FastMath; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitInternalError; import org.orekit.errors.OrekitMessages; import org.orekit.time.AbsoluteDate; import org.orekit.time.FieldAbsoluteDate; import org.orekit.time.TimeStamped; /** {@link TimeStamped time-stamped} version of {@link FieldAngularCoordinates}. * <p>Instances of this class are guaranteed to be immutable.</p> * @param <T> the type of the field elements * @author Luc Maisonobe * @since 7.0 */ public class TimeStampedFieldAngularCoordinates<T extends RealFieldElement<T>> extends FieldAngularCoordinates<T> { /** The date. */ private final FieldAbsoluteDate<T> date; /** Build the rotation that transforms a pair of pv coordinates into another pair. * <p><em>WARNING</em>! This method requires much more stringent assumptions on * its parameters than the similar {@link org.hipparchus.geometry.euclidean.threed.Rotation#Rotation( * org.hipparchus.geometry.euclidean.threed.Vector3D, org.hipparchus.geometry.euclidean.threed.Vector3D, * org.hipparchus.geometry.euclidean.threed.Vector3D, org.hipparchus.geometry.euclidean.threed.Vector3D) * constructor} from the {@link org.hipparchus.geometry.euclidean.threed.Rotation Rotation} class. * As far as the Rotation constructor is concerned, the {@code v₂} vector from * the second pair can be slightly misaligned. The Rotation constructor will * compensate for this misalignment and create a rotation that ensure {@code * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be * preserved, this constructor works <em>only</em> if the two pairs are fully * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p> * @param date coordinates date * @param u1 first vector of the origin pair * @param u2 second vector of the origin pair * @param v1 desired image of u1 by the rotation * @param v2 desired image of u2 by the rotation * @param tolerance relative tolerance factor used to check singularities * @exception OrekitException if the vectors components cannot be converted to * {@link DerivativeStructure} with proper order */ public TimeStampedFieldAngularCoordinates (final AbsoluteDate date, final FieldPVCoordinates<T> u1, final FieldPVCoordinates<T> u2, final FieldPVCoordinates<T> v1, final FieldPVCoordinates<T> v2, final double tolerance) throws OrekitException { this(new FieldAbsoluteDate<>(u1.getPosition().getX().getField(), date), u1, u2, v1, v2, tolerance); } /** Build the rotation that transforms a pair of pv coordinates into another pair. * <p><em>WARNING</em>! This method requires much more stringent assumptions on * its parameters than the similar {@link org.hipparchus.geometry.euclidean.threed.Rotation#Rotation( * org.hipparchus.geometry.euclidean.threed.Vector3D, org.hipparchus.geometry.euclidean.threed.Vector3D, * org.hipparchus.geometry.euclidean.threed.Vector3D, org.hipparchus.geometry.euclidean.threed.Vector3D) * constructor} from the {@link org.hipparchus.geometry.euclidean.threed.Rotation Rotation} class. * As far as the Rotation constructor is concerned, the {@code v₂} vector from * the second pair can be slightly misaligned. The Rotation constructor will * compensate for this misalignment and create a rotation that ensure {@code * v₁ = r(u₁)} and {@code v₂ ∈ plane (r(u₁), r(u₂))}. <em>THIS IS NOT * TRUE ANYMORE IN THIS CLASS</em>! As derivatives are involved and must be * preserved, this constructor works <em>only</em> if the two pairs are fully * consistent, i.e. if a rotation exists that fulfill all the requirements: {@code * v₁ = r(u₁)}, {@code v₂ = r(u₂)}, {@code dv₁/dt = dr(u₁)/dt}, {@code dv₂/dt * = dr(u₂)/dt}, {@code d²v₁/dt² = d²r(u₁)/dt²}, {@code d²v₂/dt² = d²r(u₂)/dt²}.</p> * @param date coordinates date * @param u1 first vector of the origin pair * @param u2 second vector of the origin pair * @param v1 desired image of u1 by the rotation * @param v2 desired image of u2 by the rotation * @param tolerance relative tolerance factor used to check singularities * @exception OrekitException if the vectors components cannot be converted to * {@link DerivativeStructure} with proper order */ public TimeStampedFieldAngularCoordinates (final FieldAbsoluteDate<T> date, final FieldPVCoordinates<T> u1, final FieldPVCoordinates<T> u2, final FieldPVCoordinates<T> v1, final FieldPVCoordinates<T> v2, final double tolerance) throws OrekitException { super(u1, u2, v1, v2, tolerance); this.date = date; } /** Builds a rotation/rotation rate pair. * @param date coordinates date * @param rotation rotation * @param rotationRate rotation rate Ω (rad/s) * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²) */ public TimeStampedFieldAngularCoordinates(final AbsoluteDate date, final FieldRotation<T> rotation, final FieldVector3D<T> rotationRate, final FieldVector3D<T> rotationAcceleration) { this(new FieldAbsoluteDate<>(rotation.getQ0().getField(), date), rotation, rotationRate, rotationAcceleration); } /** Builds a rotation/rotation rate pair. * @param date coordinates date * @param rotation rotation * @param rotationRate rotation rate Ω (rad/s) * @param rotationAcceleration rotation acceleration dΩ/dt (rad²/s²) */ public TimeStampedFieldAngularCoordinates(final FieldAbsoluteDate<T> date, final FieldRotation<T> rotation, final FieldVector3D<T> rotationRate, final FieldVector3D<T> rotationAcceleration) { super(rotation, rotationRate, rotationAcceleration); this.date = date; } /** Revert a rotation/rotation rate pair. * Build a pair which reverse the effect of another pair. * @return a new pair whose effect is the reverse of the effect * of the instance */ public TimeStampedFieldAngularCoordinates<T> revert() { return new TimeStampedFieldAngularCoordinates<T>(date, getRotation().revert(), getRotation().applyInverseTo(getRotationRate().negate()), getRotation().applyInverseTo(getRotationAcceleration().negate())); } /** Get the date. * @return date */ public FieldAbsoluteDate<T> getDate() { return date; } /** Get a time-shifted state. * <p> * The state can be slightly shifted to close dates. This shift is based on * a simple linear model. It is <em>not</em> intended as a replacement for * proper attitude propagation but should be sufficient for either small * time shifts or coarse accuracy. * </p> * @param dt time shift in seconds * @return a new state, shifted with respect to the instance (which is immutable) */ public TimeStampedFieldAngularCoordinates<T> shiftedBy(final double dt) { return shiftedBy(getDate().getField().getZero().add(dt)); } /** Get a time-shifted state. * <p> * The state can be slightly shifted to close dates. This shift is based on * a simple linear model. It is <em>not</em> intended as a replacement for * proper attitude propagation but should be sufficient for either small * time shifts or coarse accuracy. * </p> * @param dt time shift in seconds * @return a new state, shifted with respect to the instance (which is immutable) */ public TimeStampedFieldAngularCoordinates<T> shiftedBy(final T dt) { final FieldAngularCoordinates<T> sac = super.shiftedBy(dt); return new TimeStampedFieldAngularCoordinates<T>(date.shiftedBy(dt), sac.getRotation(), sac.getRotationRate(), sac.getRotationAcceleration()); } /** Add an offset from the instance. * <p> * We consider here that the offset rotation is applied first and the * instance is applied afterward. Note that angular coordinates do <em>not</em> * commute under this operation, i.e. {@code a.addOffset(b)} and {@code * b.addOffset(a)} lead to <em>different</em> results in most cases. * </p> * <p> * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed * so that round trip applications are possible. This means that both {@code * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. * </p> * @param offset offset to subtract * @return new instance, with offset subtracted * @see #subtractOffset(FieldAngularCoordinates) */ public TimeStampedFieldAngularCoordinates<T> addOffset(final FieldAngularCoordinates<T> offset) { final FieldVector3D<T> rOmega = getRotation().applyTo(offset.getRotationRate()); final FieldVector3D<T> rOmegaDot = getRotation().applyTo(offset.getRotationAcceleration()); return new TimeStampedFieldAngularCoordinates<T>(date, getRotation().compose(offset.getRotation(), RotationConvention.VECTOR_OPERATOR), getRotationRate().add(rOmega), new FieldVector3D<T>( 1.0, getRotationAcceleration(), 1.0, rOmegaDot, -1.0, FieldVector3D.crossProduct(getRotationRate(), rOmega))); } /** Subtract an offset from the instance. * <p> * We consider here that the offset Rotation is applied first and the * instance is applied afterward. Note that angular coordinates do <em>not</em> * commute under this operation, i.e. {@code a.subtractOffset(b)} and {@code * b.subtractOffset(a)} lead to <em>different</em> results in most cases. * </p> * <p> * The two methods {@link #addOffset(FieldAngularCoordinates) addOffset} and * {@link #subtractOffset(FieldAngularCoordinates) subtractOffset} are designed * so that round trip applications are possible. This means that both {@code * ac1.subtractOffset(ac2).addOffset(ac2)} and {@code * ac1.addOffset(ac2).subtractOffset(ac2)} return angular coordinates equal to ac1. * </p> * @param offset offset to subtract * @return new instance, with offset subtracted * @see #addOffset(FieldAngularCoordinates) */ public TimeStampedFieldAngularCoordinates<T> subtractOffset(final FieldAngularCoordinates<T> offset) { return addOffset(offset.revert()); } /** Interpolate angular coordinates. * <p> * The interpolated instance is created by polynomial Hermite interpolation * on Rodrigues vector ensuring rotation rate remains the exact derivative of rotation. * </p> * <p> * This method is based on Sergei Tanygin's paper <a * href="http://www.agi.com/downloads/resources/white-papers/Attitude-interpolation.pdf">Attitude * Interpolation</a>, changing the norm of the vector to match the modified Rodrigues * vector as described in Malcolm D. Shuster's paper <a * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A * Survey of Attitude Representations</a>. This change avoids the singularity at π. * There is still a singularity at 2π, which is handled by slightly offsetting all rotations * when this singularity is detected. * </p> * <p> * Note that even if first time derivatives (rotation rates) * from sample can be ignored, the interpolated instance always includes * interpolated derivatives. This feature can be used explicitly to * compute these derivatives when it would be too complex to compute them * from an analytical formula: just compute a few sample points from the * explicit formula and set the derivatives to zero in these sample points, * then use interpolation to add derivatives consistent with the rotations. * </p> * @param date interpolation date * @param filter filter for derivatives from the sample to use in interpolation * @param sample sample points on which interpolation should be done * @param <T> the type of the field elements * @return a new position-velocity, interpolated at specified date * @exception OrekitException if the number of point is too small for interpolating */ public static <T extends RealFieldElement<T>> TimeStampedFieldAngularCoordinates<T> interpolate(final AbsoluteDate date, final AngularDerivativesFilter filter, final Collection<TimeStampedFieldAngularCoordinates<T>> sample) throws OrekitException { return interpolate(new FieldAbsoluteDate<>(sample.iterator().next().getRotation().getQ0().getField(), date), filter, sample); } /** Interpolate angular coordinates. * <p> * The interpolated instance is created by polynomial Hermite interpolation * on Rodrigues vector ensuring rotation rate remains the exact derivative of rotation. * </p> * <p> * This method is based on Sergei Tanygin's paper <a * href="http://www.agi.com/downloads/resources/white-papers/Attitude-interpolation.pdf">Attitude * Interpolation</a>, changing the norm of the vector to match the modified Rodrigues * vector as described in Malcolm D. Shuster's paper <a * href="http://www.ladispe.polito.it/corsi/Meccatronica/02JHCOR/2011-12/Slides/Shuster_Pub_1993h_J_Repsurv_scan.pdf">A * Survey of Attitude Representations</a>. This change avoids the singularity at π. * There is still a singularity at 2π, which is handled by slightly offsetting all rotations * when this singularity is detected. * </p> * <p> * Note that even if first time derivatives (rotation rates) * from sample can be ignored, the interpolated instance always includes * interpolated derivatives. This feature can be used explicitly to * compute these derivatives when it would be too complex to compute them * from an analytical formula: just compute a few sample points from the * explicit formula and set the derivatives to zero in these sample points, * then use interpolation to add derivatives consistent with the rotations. * </p> * @param date interpolation date * @param filter filter for derivatives from the sample to use in interpolation * @param sample sample points on which interpolation should be done * @param <T> the type of the field elements * @return a new position-velocity, interpolated at specified date * @exception OrekitException if the number of point is too small for interpolating */ public static <T extends RealFieldElement<T>> TimeStampedFieldAngularCoordinates<T> interpolate(final FieldAbsoluteDate<T> date, final AngularDerivativesFilter filter, final Collection<TimeStampedFieldAngularCoordinates<T>> sample) throws OrekitException { // get field properties final Field<T> field = sample.iterator().next().getRotation().getQ0().getField(); // set up safety elements for 2π singularity avoidance final double epsilon = 2 * FastMath.PI / sample.size(); final double threshold = FastMath.min(-(1.0 - 1.0e-4), -FastMath.cos(epsilon / 4)); // set up a linear model canceling mean rotation rate final FieldVector3D<T> meanRate; if (filter != AngularDerivativesFilter.USE_R) { FieldVector3D<T> sum = FieldVector3D.getZero(field); for (final TimeStampedFieldAngularCoordinates<T> datedAC : sample) { sum = sum.add(datedAC.getRotationRate()); } meanRate = new FieldVector3D<T>(1.0 / sample.size(), sum); } else { if (sample.size() < 2) { throw new OrekitException(OrekitMessages.NOT_ENOUGH_DATA_FOR_INTERPOLATION, sample.size()); } FieldVector3D<T> sum = FieldVector3D.getZero(field); TimeStampedFieldAngularCoordinates<T> previous = null; for (final TimeStampedFieldAngularCoordinates<T> datedAC : sample) { if (previous != null) { sum = sum.add(estimateRate(previous.getRotation(), datedAC.getRotation(), datedAC.date.durationFrom(previous.getDate()))); } previous = datedAC; } meanRate = new FieldVector3D<T>(1.0 / (sample.size() - 1), sum); } TimeStampedFieldAngularCoordinates<T> offset = new TimeStampedFieldAngularCoordinates<T>(date, FieldRotation.getIdentity(field), meanRate, FieldVector3D.getZero(field)); boolean restart = true; for (int i = 0; restart && i < sample.size() + 2; ++i) { // offset adaptation parameters restart = false; // set up an interpolator taking derivatives into account final FieldHermiteInterpolator<T> interpolator = new FieldHermiteInterpolator<T>(); // add sample points double sign = +1.0; FieldRotation<T> previous = FieldRotation.getIdentity(field); for (final TimeStampedFieldAngularCoordinates<T> ac : sample) { // remove linear offset from the current coordinates final T dt = ac.date.durationFrom(date); final TimeStampedFieldAngularCoordinates<T> fixed = ac.subtractOffset(offset.shiftedBy(dt)); // make sure all interpolated points will be on the same branch final T dot = dt.linearCombination(fixed.getRotation().getQ0(), previous.getQ0(), fixed.getRotation().getQ1(), previous.getQ1(), fixed.getRotation().getQ2(), previous.getQ2(), fixed.getRotation().getQ3(), previous.getQ3()); sign = FastMath.copySign(1.0, dot.getReal() * sign); previous = fixed.getRotation(); // check modified Rodrigues vector singularity if (fixed.getRotation().getQ0().getReal() * sign < threshold) { // the sample point is close to a modified Rodrigues vector singularity // we need to change the linear offset model to avoid this restart = true; break; } final T[][] rodrigues = fixed.getModifiedRodrigues(sign); switch (filter) { case USE_RRA: // populate sample with rotation, rotation rate and acceleration data interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1], rodrigues[2]); break; case USE_RR: // populate sample with rotation and rotation rate data interpolator.addSamplePoint(dt, rodrigues[0], rodrigues[1]); break; case USE_R: // populate sample with rotation data only interpolator.addSamplePoint(dt, rodrigues[0]); break; default : // this should never happen throw new OrekitInternalError(null); } } if (restart) { // interpolation failed, some intermediate rotation was too close to 2π // we need to offset all rotations to avoid the singularity offset = offset.addOffset(new FieldAngularCoordinates<T>(new FieldRotation<T>(FieldVector3D.getPlusI(field), field.getZero().add(epsilon), RotationConvention.VECTOR_OPERATOR), FieldVector3D.getZero(field), FieldVector3D.getZero(field))); } else { // interpolation succeeded with the current offset final T[][] p = interpolator.derivatives(field.getZero(), 2); final FieldAngularCoordinates<T> ac = createFromModifiedRodrigues(p); return new TimeStampedFieldAngularCoordinates<>(offset.getDate(), ac.getRotation(), ac.getRotationRate(), ac.getRotationAcceleration()).addOffset(offset); } } // this should never happen throw new OrekitInternalError(null); } }