/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.propagation.semianalytical.dsst.utilities; import org.hipparchus.util.FastMath; /** Compute the G<sub>ms</sub><sup>j</sup> and the H<sub>ms</sub><sup>j</sup> * polynomials in the equinoctial elements h, k and the direction cosines α and β * and their partial derivatives with respect to k, h, α and β. * <p> * The expressions used are equations 2.7.5-(1)(2) from the Danielson paper. * </p> * @author Romain Di Costanzo */ public class GHmsjPolynomials { /** C<sub>j</sub>(k, h), S<sub>j</sub>(k, h) coefficient. * (k, h) are the (x, y) component of the eccentricity vector in equinoctial elements */ private final CjSjCoefficient cjsjKH; /** C<sub>j</sub>(α, β), S<sub>j</sub>(α, β) coefficient. * (α, β) are the direction cosines */ private final CjSjCoefficient cjsjAB; /** Is the orbit represented as a retrograde orbit. * I = -1 if yes, +1 otherwise. */ private int I; /** Create a set of G<sub>ms</sub><sup>j</sup> and H<sub>ms</sub><sup>j</sup> polynomials. * @param k X component of the eccentricity vector * @param h Y component of the eccentricity vector * @param alpha direction cosine α * @param beta direction cosine β * @param retroFactor -1 if the orbit is represented as retrograde, +1 otherwise **/ public GHmsjPolynomials(final double k, final double h, final double alpha, final double beta, final int retroFactor) { this.cjsjKH = new CjSjCoefficient(k, h); this.cjsjAB = new CjSjCoefficient(alpha, beta); this.I = retroFactor; } /** Get the G<sub>ms</sub><sup>j</sup> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return the G<sub>ms</sub><sup>j</sup> */ public double getGmsj(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double gms = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; gms = cjsjKH.getCj(sMj) * cjsjAB.getCj(mMis) - I * sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getSj(mMis); } else { final int sMim = FastMath.abs(s - I * m); gms = cjsjKH.getCj(sMj) * cjsjAB.getCj(sMim) + sgn(s - j) * sgn(s - m) * cjsjKH.getSj(sMj) * cjsjAB.getSj(sMim); } return gms; } /** Get the H<sub>ms</sub><sup>j</sup> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return the H<sub>ms</sub><sup>j</sup> */ public double getHmsj(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double hms = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; hms = I * cjsjKH.getCj(sMj) * cjsjAB.getSj(mMis) + sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getCj(mMis); } else { final int sMim = FastMath.abs(s - I * m); hms = -sgn(s - m) * cjsjKH.getCj(sMj) * cjsjAB.getSj(sMim) + sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getCj(sMim); } return hms; } /** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>k</sub> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return dG<sub>ms</sub><sup>j</sup> / d<sub>k</sub> */ public double getdGmsdk(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double dGmsdk = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; dGmsdk = cjsjKH.getDcjDk(sMj) * cjsjAB.getCj(mMis) - I * sgn(s - j) * cjsjKH.getDsjDk(sMj) * cjsjAB.getSj(mMis); } else { final int sMim = FastMath.abs(s - I * m); dGmsdk = cjsjKH.getDcjDk(sMj) * cjsjAB.getCj(sMim) + sgn(s - j) * sgn(s - m) * cjsjKH.getDsjDk(sMj) * cjsjAB.getSj(sMim); } return dGmsdk; } /** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>h</sub> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return dG<sub>ms</sub><sup>j</sup> / d<sub>h</sub> */ public double getdGmsdh(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double dGmsdh = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; dGmsdh = cjsjKH.getDcjDh(sMj) * cjsjAB.getCj(mMis) - I * sgn(s - j) * cjsjKH.getDsjDh(sMj) * cjsjAB.getSj(mMis); } else { final int sMim = FastMath.abs(s - I * m); dGmsdh = cjsjKH.getDcjDh(sMj) * cjsjAB.getCj(sMim) + sgn(s - j) * sgn(s - m) * cjsjKH.getDsjDh(sMj) * cjsjAB.getSj(sMim); } return dGmsdh; } /** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>α</sub> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return dG<sub>ms</sub><sup>j</sup> / d<sub>α</sub> */ public double getdGmsdAlpha(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double dGmsdAl = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; dGmsdAl = cjsjKH.getCj(sMj) * cjsjAB.getDcjDk(mMis) - I * sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDsjDk(mMis); } else { final int sMim = FastMath.abs(s - I * m); dGmsdAl = cjsjKH.getCj(sMj) * cjsjAB.getDcjDk(sMim) + sgn(s - j) * sgn(s - m) * cjsjKH.getSj(sMj) * cjsjAB.getDsjDk(sMim); } return dGmsdAl; } /** Get the dG<sub>ms</sub><sup>j</sup> / d<sub>β</sub> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return dG<sub>ms</sub><sup>j</sup> / d<sub>β</sub> */ public double getdGmsdBeta(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double dGmsdBe = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; dGmsdBe = cjsjKH.getCj(sMj) * cjsjAB.getDcjDh(mMis) - I * sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDsjDh(mMis); } else { final int sMim = FastMath.abs(s - I * m); dGmsdBe = cjsjKH.getCj(sMj) * cjsjAB.getDcjDh(sMim) + sgn(s - j) * sgn(s - m) * cjsjKH.getSj(sMj) * cjsjAB.getDsjDh(sMim); } return dGmsdBe; } /** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>k</sub> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return dH<sub>ms</sub><sup>j</sup> / d<sub>k</sub> */ public double getdHmsdk(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double dHmsdk = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; dHmsdk = I * cjsjKH.getDcjDk(sMj) * cjsjAB.getSj(mMis) + sgn(s - j) * cjsjKH.getDsjDk(sMj) * cjsjAB.getCj(mMis); } else { final int sMim = FastMath.abs(s - I * m); dHmsdk = -sgn(s - m) * cjsjKH.getDcjDk(sMj) * cjsjAB.getSj(sMim) + sgn(s - j) * cjsjKH.getDsjDk(sMj) * cjsjAB.getCj(sMim); } return dHmsdk; } /** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>h</sub> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return dH<sub>ms</sub><sup>j</sup> / d<sub>h</sub> */ public double getdHmsdh(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double dHmsdh = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; dHmsdh = I * cjsjKH.getDcjDh(sMj) * cjsjAB.getSj(mMis) + sgn(s - j) * cjsjKH.getDsjDh(sMj) * cjsjAB.getCj(mMis); } else { final int sMim = FastMath.abs(s - I * m); dHmsdh = -sgn(s - m) * cjsjKH.getDcjDh(sMj) * cjsjAB.getSj(sMim) + sgn(s - j) * cjsjKH.getDsjDh(sMj) * cjsjAB.getCj(sMim); } return dHmsdh; } /** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>α</sub> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return dH<sub>ms</sub><sup>j</sup> / d<sub>α</sub> */ public double getdHmsdAlpha(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double dHmsdAl = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; dHmsdAl = I * cjsjKH.getCj(sMj) * cjsjAB.getDsjDk(mMis) + sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDcjDk(mMis); } else { final int sMim = FastMath.abs(s - I * m); dHmsdAl = -sgn(s - m) * cjsjKH.getCj(sMj) * cjsjAB.getDsjDk(sMim) + sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDcjDk(sMim); } return dHmsdAl; } /** Get the dH<sub>ms</sub><sup>j</sup> / d<sub>β</sub> coefficient. * @param m m subscript * @param s s subscript * @param j order * @return dH<sub>ms</sub><sup>j</sup> / d<sub>β</sub> */ public double getdHmsdBeta(final int m, final int s, final int j) { final int sMj = FastMath.abs(s - j); double dHmsdBe = 0d; if (FastMath.abs(s) <= m) { final int mMis = m - I * s; dHmsdBe = I * cjsjKH.getCj(sMj) * cjsjAB.getDsjDh(mMis) + sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDcjDh(mMis); } else { final int sMim = FastMath.abs(s - I * m); dHmsdBe = -sgn(s - m) * cjsjKH.getCj(sMj) * cjsjAB.getDsjDh(sMim) + sgn(s - j) * cjsjKH.getSj(sMj) * cjsjAB.getDcjDh(sMim); } return dHmsdBe; } /** Get the sign of an integer. * @param i number on which evaluation is done * @return -1 or +1 depending on sign of i */ private int sgn(final int i) { return (i < 0) ? -1 : 1; } }