/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.utils; import java.io.Serializable; import org.hipparchus.analysis.differentiation.DSFactory; import org.hipparchus.analysis.differentiation.DerivativeStructure; import org.hipparchus.geometry.euclidean.threed.FieldVector3D; import org.hipparchus.geometry.euclidean.threed.Vector3D; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitMessages; import org.orekit.time.TimeShiftable; /** Simple container for Position/Velocity/Acceleration triplets. * <p> * The state can be slightly shifted to close dates. This shift is based on * a simple quadratic model. It is <em>not</em> intended as a replacement for * proper orbit propagation (it is not even Keplerian!) but should be sufficient * for either small time shifts or coarse accuracy. * </p> * <p> * This class is the angular counterpart to {@link AngularCoordinates}. * </p> * <p>Instances of this class are guaranteed to be immutable.</p> * @author Fabien Maussion * @author Luc Maisonobe */ public class PVCoordinates implements TimeShiftable<PVCoordinates>, Serializable { /** Fixed position/velocity at origin (both p, v and a are zero vectors). */ public static final PVCoordinates ZERO = new PVCoordinates(Vector3D.ZERO, Vector3D.ZERO, Vector3D.ZERO); /** Serializable UID. */ private static final long serialVersionUID = 20140407L; /** The position. */ private final Vector3D position; /** The velocity. */ private final Vector3D velocity; /** The acceleration. */ private final Vector3D acceleration; /** Simple constructor. * <p> Set the Coordinates to default : (0 0 0), (0 0 0), (0 0 0).</p> */ public PVCoordinates() { position = Vector3D.ZERO; velocity = Vector3D.ZERO; acceleration = Vector3D.ZERO; } /** Builds a PVCoordinates triplet with zero acceleration. * <p>Acceleration is set to zero</p> * @param position the position vector (m) * @param velocity the velocity vector (m/s) */ public PVCoordinates(final Vector3D position, final Vector3D velocity) { this.position = position; this.velocity = velocity; this.acceleration = Vector3D.ZERO; } /** Builds a PVCoordinates triplet. * @param position the position vector (m) * @param velocity the velocity vector (m/s) * @param acceleration the acceleration vector (m/s²) */ public PVCoordinates(final Vector3D position, final Vector3D velocity, final Vector3D acceleration) { this.position = position; this.velocity = velocity; this.acceleration = acceleration; } /** Multiplicative constructor. * <p>Build a PVCoordinates from another one and a scale factor.</p> * <p>The PVCoordinates built will be a * pv</p> * @param a scale factor * @param pv base (unscaled) PVCoordinates */ public PVCoordinates(final double a, final PVCoordinates pv) { position = new Vector3D(a, pv.position); velocity = new Vector3D(a, pv.velocity); acceleration = new Vector3D(a, pv.acceleration); } /** Subtractive constructor. * <p>Build a relative PVCoordinates from a start and an end position.</p> * <p>The PVCoordinates built will be end - start.</p> * @param start Starting PVCoordinates * @param end ending PVCoordinates */ public PVCoordinates(final PVCoordinates start, final PVCoordinates end) { this.position = end.position.subtract(start.position); this.velocity = end.velocity.subtract(start.velocity); this.acceleration = end.acceleration.subtract(start.acceleration); } /** Linear constructor. * <p>Build a PVCoordinates from two other ones and corresponding scale factors.</p> * <p>The PVCoordinates built will be a1 * u1 + a2 * u2</p> * @param a1 first scale factor * @param pv1 first base (unscaled) PVCoordinates * @param a2 second scale factor * @param pv2 second base (unscaled) PVCoordinates */ public PVCoordinates(final double a1, final PVCoordinates pv1, final double a2, final PVCoordinates pv2) { position = new Vector3D(a1, pv1.position, a2, pv2.position); velocity = new Vector3D(a1, pv1.velocity, a2, pv2.velocity); acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration); } /** Linear constructor. * <p>Build a PVCoordinates from three other ones and corresponding scale factors.</p> * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3</p> * @param a1 first scale factor * @param pv1 first base (unscaled) PVCoordinates * @param a2 second scale factor * @param pv2 second base (unscaled) PVCoordinates * @param a3 third scale factor * @param pv3 third base (unscaled) PVCoordinates */ public PVCoordinates(final double a1, final PVCoordinates pv1, final double a2, final PVCoordinates pv2, final double a3, final PVCoordinates pv3) { position = new Vector3D(a1, pv1.position, a2, pv2.position, a3, pv3.position); velocity = new Vector3D(a1, pv1.velocity, a2, pv2.velocity, a3, pv3.velocity); acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration); } /** Linear constructor. * <p>Build a PVCoordinates from four other ones and corresponding scale factors.</p> * <p>The PVCoordinates built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4</p> * @param a1 first scale factor * @param pv1 first base (unscaled) PVCoordinates * @param a2 second scale factor * @param pv2 second base (unscaled) PVCoordinates * @param a3 third scale factor * @param pv3 third base (unscaled) PVCoordinates * @param a4 fourth scale factor * @param pv4 fourth base (unscaled) PVCoordinates */ public PVCoordinates(final double a1, final PVCoordinates pv1, final double a2, final PVCoordinates pv2, final double a3, final PVCoordinates pv3, final double a4, final PVCoordinates pv4) { position = new Vector3D(a1, pv1.position, a2, pv2.position, a3, pv3.position, a4, pv4.position); velocity = new Vector3D(a1, pv1.velocity, a2, pv2.velocity, a3, pv3.velocity, a4, pv4.velocity); acceleration = new Vector3D(a1, pv1.acceleration, a2, pv2.acceleration, a3, pv3.acceleration, a4, pv4.acceleration); } /** Builds a PVCoordinates triplet from a {@link FieldVector3D}<{@link DerivativeStructure}>. * <p> * The vector components must have time as their only derivation parameter and * have consistent derivation orders. * </p> * @param p vector with time-derivatives embedded within the coordinates */ public PVCoordinates(final FieldVector3D<DerivativeStructure> p) { position = new Vector3D(p.getX().getReal(), p.getY().getReal(), p.getZ().getReal()); if (p.getX().getOrder() >= 1) { velocity = new Vector3D(p.getX().getPartialDerivative(1), p.getY().getPartialDerivative(1), p.getZ().getPartialDerivative(1)); if (p.getX().getOrder() >= 2) { acceleration = new Vector3D(p.getX().getPartialDerivative(2), p.getY().getPartialDerivative(2), p.getZ().getPartialDerivative(2)); } else { acceleration = Vector3D.ZERO; } } else { velocity = Vector3D.ZERO; acceleration = Vector3D.ZERO; } } /** Transform the instance to a {@link FieldVector3D}<{@link DerivativeStructure}>. * <p> * The {@link DerivativeStructure} coordinates correspond to time-derivatives up * to the user-specified order. * </p> * @param order derivation order for the vector components (must be either 0, 1 or 2) * @return vector with time-derivatives embedded within the coordinates * @exception OrekitException if the user specified order is too large */ public FieldVector3D<DerivativeStructure> toDerivativeStructureVector(final int order) throws OrekitException { final DSFactory factory; final DerivativeStructure x; final DerivativeStructure y; final DerivativeStructure z; switch(order) { case 0 : factory = new DSFactory(1, order); x = factory.build(position.getX()); y = factory.build(position.getY()); z = factory.build(position.getZ()); break; case 1 : factory = new DSFactory(1, order); x = factory.build(position.getX(), velocity.getX()); y = factory.build(position.getY(), velocity.getY()); z = factory.build(position.getZ(), velocity.getZ()); break; case 2 : factory = new DSFactory(1, order); x = factory.build(position.getX(), velocity.getX(), acceleration.getX()); y = factory.build(position.getY(), velocity.getY(), acceleration.getY()); z = factory.build(position.getZ(), velocity.getZ(), acceleration.getZ()); break; default : throw new OrekitException(OrekitMessages.OUT_OF_RANGE_DERIVATION_ORDER, order); } return new FieldVector3D<DerivativeStructure>(x, y, z); } /** Estimate velocity between two positions. * <p>Estimation is based on a simple fixed velocity translation * during the time interval between the two positions.</p> * @param start start position * @param end end position * @param dt time elapsed between the dates of the two positions * @return velocity allowing to go from start to end positions */ public static Vector3D estimateVelocity(final Vector3D start, final Vector3D end, final double dt) { final double scale = 1.0 / dt; return new Vector3D(scale, end, -scale, start); } /** Get a time-shifted state. * <p> * The state can be slightly shifted to close dates. This shift is based on * a simple Taylor expansion. It is <em>not</em> intended as a replacement for * proper orbit propagation (it is not even Keplerian!) but should be sufficient * for either small time shifts or coarse accuracy. * </p> * @param dt time shift in seconds * @return a new state, shifted with respect to the instance (which is immutable) */ public PVCoordinates shiftedBy(final double dt) { return new PVCoordinates(new Vector3D(1, position, dt, velocity, 0.5 * dt * dt, acceleration), new Vector3D(1, velocity, dt, acceleration), acceleration); } /** Gets the position. * @return the position vector (m). */ public Vector3D getPosition() { return position; } /** Gets the velocity. * @return the velocity vector (m/s). */ public Vector3D getVelocity() { return velocity; } /** Gets the acceleration. * @return the acceleration vector (m/s²). */ public Vector3D getAcceleration() { return acceleration; } /** Gets the momentum. * <p>This vector is the p ⊗ v where p is position, v is velocity * and ⊗ is cross product. To get the real physical angular momentum * you need to multiply this vector by the mass.</p> * <p>The returned vector is recomputed each time this method is called, it * is not cached.</p> * @return a new instance of the momentum vector (m²/s). */ public Vector3D getMomentum() { return Vector3D.crossProduct(position, velocity); } /** * Get the angular velocity (spin) of this point as seen from the origin. * * <p> The angular velocity vector is parallel to the {@link #getMomentum() * angular momentum} and is computed by ω = p × v / ||p||² * * @return the angular velocity vector * @see <a href="http://en.wikipedia.org/wiki/Angular_velocity">Angular Velocity on * Wikipedia</a> */ public Vector3D getAngularVelocity() { return this.getMomentum().scalarMultiply(1.0 / this.getPosition().getNormSq()); } /** Get the opposite of the instance. * @return a new position-velocity which is opposite to the instance */ public PVCoordinates negate() { return new PVCoordinates(position.negate(), velocity.negate(), acceleration.negate()); } /** Normalize the position part of the instance. * <p> * The computed coordinates first component (position) will be a * normalized vector, the second component (velocity) will be the * derivative of the first component (hence it will generally not * be normalized), and the third component (acceleration) will be the * derivative of the second component (hence it will generally not * be normalized). * </p> * @return a new instance, with first component normalized and * remaining component computed to have consistent derivatives */ public PVCoordinates normalize() { final double inv = 1.0 / position.getNorm(); final Vector3D u = new Vector3D(inv, position); final Vector3D v = new Vector3D(inv, velocity); final Vector3D w = new Vector3D(inv, acceleration); final double uv = Vector3D.dotProduct(u, v); final double v2 = Vector3D.dotProduct(v, v); final double uw = Vector3D.dotProduct(u, w); final Vector3D uDot = new Vector3D(1, v, -uv, u); final Vector3D uDotDot = new Vector3D(1, w, -2 * uv, v, 3 * uv * uv - v2 - uw, u); return new PVCoordinates(u, uDot, uDotDot); } /** Compute the cross-product of two instances. * @param pv1 first instances * @param pv2 second instances * @return the cross product v1 ^ v2 as a new instance */ public static PVCoordinates crossProduct(final PVCoordinates pv1, final PVCoordinates pv2) { final Vector3D p1 = pv1.position; final Vector3D v1 = pv1.velocity; final Vector3D a1 = pv1.acceleration; final Vector3D p2 = pv2.position; final Vector3D v2 = pv2.velocity; final Vector3D a2 = pv2.acceleration; return new PVCoordinates(Vector3D.crossProduct(p1, p2), new Vector3D(1, Vector3D.crossProduct(p1, v2), 1, Vector3D.crossProduct(v1, p2)), new Vector3D(1, Vector3D.crossProduct(p1, a2), 2, Vector3D.crossProduct(v1, v2), 1, Vector3D.crossProduct(a1, p2))); } /** Return a string representation of this position/velocity pair. * @return string representation of this position/velocity pair */ public String toString() { final String comma = ", "; return new StringBuffer().append('{').append("P("). append(position.getX()).append(comma). append(position.getY()).append(comma). append(position.getZ()).append("), V("). append(velocity.getX()).append(comma). append(velocity.getY()).append(comma). append(velocity.getZ()).append("), A("). append(acceleration.getX()).append(comma). append(acceleration.getY()).append(comma). append(acceleration.getZ()).append(")}").toString(); } /** Replace the instance with a data transfer object for serialization. * @return data transfer object that will be serialized */ private Object writeReplace() { return new DTO(this); } /** Internal class used only for serialization. */ private static class DTO implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20140723L; /** Double values. */ private double[] d; /** Simple constructor. * @param pv instance to serialize */ private DTO(final PVCoordinates pv) { this.d = new double[] { pv.getPosition().getX(), pv.getPosition().getY(), pv.getPosition().getZ(), pv.getVelocity().getX(), pv.getVelocity().getY(), pv.getVelocity().getZ(), pv.getAcceleration().getX(), pv.getAcceleration().getY(), pv.getAcceleration().getZ(), }; } /** Replace the deserialized data transfer object with a {@link PVCoordinates}. * @return replacement {@link PVCoordinates} */ private Object readResolve() { return new PVCoordinates(new Vector3D(d[0], d[1], d[2]), new Vector3D(d[3], d[4], d[5]), new Vector3D(d[6], d[7], d[8])); } } }