/* Copyright 2002-2017 CS Systèmes d'Information * Licensed to CS Systèmes d'Information (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.propagation.numerical; import java.io.NotSerializableException; import java.io.Serializable; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; import org.hipparchus.geometry.euclidean.threed.Vector3D; import org.hipparchus.ode.ODEIntegrator; import org.hipparchus.util.FastMath; import org.orekit.attitudes.Attitude; import org.orekit.attitudes.AttitudeProvider; import org.orekit.errors.OrekitException; import org.orekit.errors.OrekitIllegalArgumentException; import org.orekit.errors.OrekitInternalError; import org.orekit.errors.OrekitMessages; import org.orekit.forces.ForceModel; import org.orekit.forces.gravity.NewtonianAttraction; import org.orekit.frames.Frame; import org.orekit.frames.Transform; import org.orekit.orbits.Orbit; import org.orekit.orbits.OrbitType; import org.orekit.orbits.PositionAngle; import org.orekit.propagation.SpacecraftState; import org.orekit.propagation.events.EventDetector; import org.orekit.propagation.integration.AbstractIntegratedPropagator; import org.orekit.propagation.integration.StateMapper; import org.orekit.time.AbsoluteDate; import org.orekit.utils.PVCoordinates; import org.orekit.utils.ParameterDriver; import org.orekit.utils.ParameterObserver; import org.orekit.utils.TimeStampedPVCoordinates; /** This class propagates {@link org.orekit.orbits.Orbit orbits} using * numerical integration. * <p>Numerical propagation is much more accurate than analytical propagation * like for example {@link org.orekit.propagation.analytical.KeplerianPropagator * keplerian} or {@link org.orekit.propagation.analytical.EcksteinHechlerPropagator * Eckstein-Hechler}, but requires a few more steps to set up to be used properly. * Whereas analytical propagators are configured only thanks to their various * constructors and can be used immediately after construction, numerical propagators * configuration involve setting several parameters between construction time * and propagation time.</p> * <p>The configuration parameters that can be set are:</p> * <ul> * <li>the initial spacecraft state ({@link #setInitialState(SpacecraftState)})</li> * <li>the central attraction coefficient ({@link #setMu(double)})</li> * <li>the various force models ({@link #addForceModel(ForceModel)}, * {@link #removeForceModels()})</li> * <li>the {@link OrbitType type} of orbital parameters to be used for propagation * ({@link #setOrbitType(OrbitType)}), * <li>the {@link PositionAngle type} of position angle to be used in orbital parameters * to be used for propagation where it is relevant ({@link * #setPositionAngleType(PositionAngle)}), * <li>whether {@link org.orekit.propagation.integration.AdditionalEquations additional equations} * (for example {@link PartialDerivativesEquations Jacobians}) should be propagated along with orbital state * ({@link #addAdditionalEquations(org.orekit.propagation.integration.AdditionalEquations)}), * <li>the discrete events that should be triggered during propagation * ({@link #addEventDetector(EventDetector)}, * {@link #clearEventsDetectors()})</li> * <li>the binding logic with the rest of the application ({@link #setSlaveMode()}, * {@link #setMasterMode(double, org.orekit.propagation.sampling.OrekitFixedStepHandler)}, * {@link #setMasterMode(org.orekit.propagation.sampling.OrekitStepHandler)}, * {@link #setEphemerisMode()}, {@link #getGeneratedEphemeris()})</li> * </ul> * <p>From these configuration parameters, only the initial state is mandatory. The default * propagation settings are in {@link OrbitType#EQUINOCTIAL equinoctial} parameters with * {@link PositionAngle#TRUE true} longitude argument. If the central attraction coefficient * is not explicitly specified, the one used to define the initial orbit will be used. * However, specifying only the initial state and perhaps the central attraction coefficient * would mean the propagator would use only keplerian forces. In this case, the simpler {@link * org.orekit.propagation.analytical.KeplerianPropagator KeplerianPropagator} class would * perhaps be more effective.</p> * <p>The underlying numerical integrator set up in the constructor may also have its own * configuration parameters. Typical configuration parameters for adaptive stepsize integrators * are the min, max and perhaps start step size as well as the absolute and/or relative errors * thresholds.</p> * <p>The state that is seen by the integrator is a simple seven elements double array. * The six first elements are either: * <ul> * <li>the {@link org.orekit.orbits.EquinoctialOrbit equinoctial orbit parameters} (a, e<sub>x</sub>, * e<sub>y</sub>, h<sub>x</sub>, h<sub>y</sub>, λ<sub>M</sub> or λ<sub>E</sub> * or λ<sub>v</sub>) in meters and radians,</li> * <li>the {@link org.orekit.orbits.KeplerianOrbit Keplerian orbit parameters} (a, e, i, ω, Ω, * M or E or v) in meters and radians,</li> * <li>the {@link org.orekit.orbits.CircularOrbit circular orbit parameters} (a, e<sub>x</sub>, e<sub>y</sub>, i, * Ω, α<sub>M</sub> or α<sub>E</sub> or α<sub>v</sub>) in meters * and radians,</li> * <li>the {@link org.orekit.orbits.CartesianOrbit Cartesian orbit parameters} (x, y, z, v<sub>x</sub>, * v<sub>y</sub>, v<sub>z</sub>) in meters and meters per seconds. * </ul> * <p> The last element is the mass in kilograms. * * <p>The following code snippet shows a typical setting for Low Earth Orbit propagation in * equinoctial parameters and true longitude argument:</p> * <pre> * final double dP = 0.001; * final double minStep = 0.001; * final double maxStep = 500; * final double initStep = 60; * final double[][] tolerance = NumericalPropagator.tolerances(dP, orbit, OrbitType.EQUINOCTIAL); * AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(minStep, maxStep, tolerance[0], tolerance[1]); * integrator.setInitialStepSize(initStep); * propagator = new NumericalPropagator(integrator); * </pre> * <p>The same propagator can be reused for several orbit extrapolations, by resetting * the initial state without modifying the other configuration parameters. However, the * same instance cannot be used simultaneously by different threads, the class is <em>not</em> * thread-safe.</p> * @see SpacecraftState * @see ForceModel * @see org.orekit.propagation.sampling.OrekitStepHandler * @see org.orekit.propagation.sampling.OrekitFixedStepHandler * @see org.orekit.propagation.integration.IntegratedEphemeris * @see TimeDerivativesEquations * * @author Mathieu Roméro * @author Luc Maisonobe * @author Guylaine Prat * @author Fabien Maussion * @author Véronique Pommier-Maurussane */ public class NumericalPropagator extends AbstractIntegratedPropagator { /** Force models used during the extrapolation of the orbit. */ private final List<ForceModel> forceModels; /** Create a new instance of NumericalPropagator, based on orbit definition mu. * After creation, the instance is empty, i.e. the attitude provider is set to an * unspecified default law and there are no perturbing forces at all. * This means that if {@link #addForceModel addForceModel} is not * called after creation, the integrated orbit will follow a keplerian * evolution only. The defaults are {@link OrbitType#EQUINOCTIAL} * for {@link #setOrbitType(OrbitType) propagation * orbit type} and {@link PositionAngle#TRUE} for {@link * #setPositionAngleType(PositionAngle) position angle type}. * @param integrator numerical integrator to use for propagation. */ public NumericalPropagator(final ODEIntegrator integrator) { super(integrator, true); forceModels = new ArrayList<ForceModel>(); initMapper(); setAttitudeProvider(DEFAULT_LAW); setSlaveMode(); setOrbitType(OrbitType.EQUINOCTIAL); setPositionAngleType(PositionAngle.TRUE); } /** Set the central attraction coefficient μ. * <p> * Setting the central attraction coefficient is * equivalent to {@link #addForceModel(ForceModel) add} * a {@link NewtonianAttraction} force model. * </p> * @param mu central attraction coefficient (m³/s²) * @see #addForceModel(ForceModel) * @see #getAllForceModels() */ public void setMu(final double mu) { addForceModel(new NewtonianAttraction(mu)); } /** Set the central attraction coefficient μ only in upper class. * @param mu central attraction coefficient (m³/s²) */ private void superSetMu(final double mu) { super.setMu(mu); } /** Check if Newtonian attraction force model is available. * <p> * Newtonian attraction is always the last force model in the list. * </p> * @return true if Newtonian attraction force model is available */ private boolean hasNewtonianAttraction() { final int last = forceModels.size() - 1; return last >= 0 && forceModels.get(last) instanceof NewtonianAttraction; } /** Add a force model. * <p>If this method is not called at all, the integrated orbit will follow * a Keplerian evolution only.</p> * @param model {@link ForceModel} to add (it can be either a perturbing force * model or an instance of {@link NewtonianAttraction}) * @see #removeForceModels() * @see #setMu(double) */ public void addForceModel(final ForceModel model) { if (model instanceof NewtonianAttraction) { // we want to add the central attraction force model try { // ensure we are notified of any mu change model.getParametersDrivers()[0].addObserver(new ParameterObserver() { /** {@inheritDoc} */ @Override public void valueChanged(final double previousValue, final ParameterDriver driver) { superSetMu(driver.getValue()); } }); } catch (OrekitException oe) { // this should never happen throw new OrekitInternalError(oe); } if (hasNewtonianAttraction()) { // there is already a central attraction model, replace it forceModels.set(forceModels.size() - 1, model); } else { // there are no central attraction model yet, add it at the end of the list forceModels.add(model); } } else { // we want to add a perturbing force model if (hasNewtonianAttraction()) { // insert the new force model before Newtonian attraction, // which should always be the last one in the list forceModels.add(forceModels.size() - 1, model); } else { // we only have perturbing force models up to now, just append at the end of the list forceModels.add(model); } } } /** Remove all force models (except central attraction). * <p>Once all perturbing forces have been removed (and as long as no new force * model is added), the integrated orbit will follow a Keplerian evolution * only.</p> * @see #addForceModel(ForceModel) */ public void removeForceModels() { final int last = forceModels.size() - 1; if (hasNewtonianAttraction()) { // preserve the Newtonian attraction model at the end final ForceModel newton = forceModels.get(last); forceModels.clear(); forceModels.add(newton); } else { forceModels.clear(); } } /** Get all the force models, perturbing forces and Newtonian attraction included. * @return list of perturbing force models, with Newtonian attraction being the * last one * @see #addForceModel(ForceModel) * @see #setMu(double) */ public List<ForceModel> getAllForceModels() { return Collections.unmodifiableList(forceModels); } /** Get perturbing force models list. * @return list of perturbing force models * @see #addForceModel(ForceModel) * @see #getNewtonianAttractionForceModel() * @deprecated as of 8.0, replaced with {@link #getAllForceModels()} */ @Deprecated public List<ForceModel> getForceModels() { if (hasNewtonianAttraction()) { // take care to not include central attraction return Collections.unmodifiableList(forceModels.subList(0, forceModels.size() - 1)); } else { return Collections.unmodifiableList(forceModels); } } /** Get the Newtonian attraction from the central body force model. * <p> * This method should be called after either {@link #setMu(double)}, * {@link #setInitialState(SpacecraftState)}, or * {@link #resetInitialState(SpacecraftState)} have been called, * or {@link #addForceModel(ForceModel)} has been called with a * {@link NewtonianAttraction} instance. * </p> * @return Newtonian attraction force model, or null if it has * not been set up by one of the methods explained above * @see #setMu(double) * @see #getForceModels() * @deprecated as of 8.0, replaced with {@link #getAllForceModels()} */ @Deprecated public NewtonianAttraction getNewtonianAttractionForceModel() { if (!hasNewtonianAttraction()) { return null; } return (NewtonianAttraction) forceModels.get(forceModels.size() - 1); } /** Set propagation orbit type. * @param orbitType orbit type to use for propagation */ public void setOrbitType(final OrbitType orbitType) { super.setOrbitType(orbitType); } /** Get propagation parameter type. * @return orbit type used for propagation */ public OrbitType getOrbitType() { return super.getOrbitType(); } /** Set position angle type. * <p> * The position parameter type is meaningful only if {@link * #getOrbitType() propagation orbit type} * support it. As an example, it is not meaningful for propagation * in {@link OrbitType#CARTESIAN Cartesian} parameters. * </p> * @param positionAngleType angle type to use for propagation */ public void setPositionAngleType(final PositionAngle positionAngleType) { super.setPositionAngleType(positionAngleType); } /** Get propagation parameter type. * @return angle type to use for propagation */ public PositionAngle getPositionAngleType() { return super.getPositionAngleType(); } /** Set the initial state. * @param initialState initial state * @exception OrekitException if initial state cannot be set */ public void setInitialState(final SpacecraftState initialState) throws OrekitException { resetInitialState(initialState); } /** {@inheritDoc} */ public void resetInitialState(final SpacecraftState state) throws OrekitException { super.resetInitialState(state); if (!hasNewtonianAttraction()) { // use the state to define central attraction setMu(state.getMu()); } setStartDate(state.getDate()); } /** {@inheritDoc} */ public TimeStampedPVCoordinates getPVCoordinates(final AbsoluteDate date, final Frame frame) throws OrekitException { return propagate(date).getPVCoordinates(frame); } /** {@inheritDoc} */ protected StateMapper createMapper(final AbsoluteDate referenceDate, final double mu, final OrbitType orbitType, final PositionAngle positionAngleType, final AttitudeProvider attitudeProvider, final Frame frame) { return new OsculatingMapper(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame); } /** Internal mapper using directly osculating parameters. */ private static class OsculatingMapper extends StateMapper implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20130621L; /** Simple constructor. * <p> * The position parameter type is meaningful only if {@link * #getOrbitType() propagation orbit type} * support it. As an example, it is not meaningful for propagation * in {@link OrbitType#CARTESIAN Cartesian} parameters. * </p> * @param referenceDate reference date * @param mu central attraction coefficient (m³/s²) * @param orbitType orbit type to use for mapping * @param positionAngleType angle type to use for propagation * @param attitudeProvider attitude provider * @param frame inertial frame */ OsculatingMapper(final AbsoluteDate referenceDate, final double mu, final OrbitType orbitType, final PositionAngle positionAngleType, final AttitudeProvider attitudeProvider, final Frame frame) { super(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame); } /** {@inheritDoc} */ public SpacecraftState mapArrayToState(final AbsoluteDate date, final double[] y, final boolean meanOnly) throws OrekitException { // the parameter meanOnly is ignored for the Numerical Propagator final double mass = y[6]; if (mass <= 0.0) { throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE, mass); } final Orbit orbit = getOrbitType().mapArrayToOrbit(y, getPositionAngleType(), date, getMu(), getFrame()); final Attitude attitude = getAttitudeProvider().getAttitude(orbit, date, getFrame()); return new SpacecraftState(orbit, attitude, mass); } /** {@inheritDoc} */ public void mapStateToArray(final SpacecraftState state, final double[] y) { getOrbitType().mapOrbitToArray(state.getOrbit(), getPositionAngleType(), y); y[6] = state.getMass(); } /** Replace the instance with a data transfer object for serialization. * @return data transfer object that will be serialized * @exception NotSerializableException if the state mapper cannot be serialized (typically for DSST propagator) */ private Object writeReplace() throws NotSerializableException { return new DataTransferObject(getReferenceDate(), getMu(), getOrbitType(), getPositionAngleType(), getAttitudeProvider(), getFrame()); } /** Internal class used only for serialization. */ private static class DataTransferObject implements Serializable { /** Serializable UID. */ private static final long serialVersionUID = 20130621L; /** Reference date. */ private final AbsoluteDate referenceDate; /** Central attraction coefficient (m³/s²). */ private final double mu; /** Orbit type to use for mapping. */ private final OrbitType orbitType; /** Angle type to use for propagation. */ private final PositionAngle positionAngleType; /** Attitude provider. */ private final AttitudeProvider attitudeProvider; /** Inertial frame. */ private final Frame frame; /** Simple constructor. * @param referenceDate reference date * @param mu central attraction coefficient (m³/s²) * @param orbitType orbit type to use for mapping * @param positionAngleType angle type to use for propagation * @param attitudeProvider attitude provider * @param frame inertial frame */ DataTransferObject(final AbsoluteDate referenceDate, final double mu, final OrbitType orbitType, final PositionAngle positionAngleType, final AttitudeProvider attitudeProvider, final Frame frame) { this.referenceDate = referenceDate; this.mu = mu; this.orbitType = orbitType; this.positionAngleType = positionAngleType; this.attitudeProvider = attitudeProvider; this.frame = frame; } /** Replace the deserialized data transfer object with a {@link OsculatingMapper}. * @return replacement {@link OsculatingMapper} */ private Object readResolve() { return new OsculatingMapper(referenceDate, mu, orbitType, positionAngleType, attitudeProvider, frame); } } } /** {@inheritDoc} */ protected MainStateEquations getMainStateEquations(final ODEIntegrator integrator) { return new Main(integrator); } /** Internal class for osculating parameters integration. */ private class Main implements MainStateEquations, TimeDerivativesEquations { /** Derivatives array. */ private final double[] yDot; /** Current orbit. */ private Orbit orbit; /** Jacobian of the orbital parameters with respect to the cartesian parameters. */ private double[][] jacobian; /** Simple constructor. * @param integrator numerical integrator to use for propagation. */ Main(final ODEIntegrator integrator) { this.yDot = new double[7]; this.jacobian = new double[6][6]; for (final ForceModel forceModel : forceModels) { forceModel.getEventsDetectors().forEach(detector -> setUpEventDetector(integrator, detector)); } } /** {@inheritDoc} */ @Override public void init(final SpacecraftState initialState, final AbsoluteDate target) throws OrekitException { for (final ForceModel forceModel : forceModels) { forceModel.init(initialState, target); } } /** {@inheritDoc} */ public double[] computeDerivatives(final SpacecraftState state) throws OrekitException { orbit = state.getOrbit(); Arrays.fill(yDot, 0.0); orbit.getJacobianWrtCartesian(getPositionAngleType(), jacobian); // compute the contributions of all perturbing forces, // using the Kepler contribution at the end since // NewtonianAttraction is always the last instance in the list for (final ForceModel forceModel : forceModels) { forceModel.addContribution(state, this); } return yDot.clone(); } /** {@inheritDoc} */ public void addKeplerContribution(final double mu) { orbit.addKeplerContribution(getPositionAngleType(), mu, yDot); } /** {@inheritDoc} */ public void addXYZAcceleration(final double x, final double y, final double z) { for (int i = 0; i < 6; ++i) { final double[] jRow = jacobian[i]; yDot[i] += jRow[3] * x + jRow[4] * y + jRow[5] * z; } } /** {@inheritDoc} */ public void addAcceleration(final Vector3D gamma, final Frame frame) throws OrekitException { final Transform t = frame.getTransformTo(orbit.getFrame(), orbit.getDate()); final Vector3D gammInRefFrame = t.transformVector(gamma); addXYZAcceleration(gammInRefFrame.getX(), gammInRefFrame.getY(), gammInRefFrame.getZ()); } /** {@inheritDoc} */ public void addMassDerivative(final double q) { if (q > 0) { throw new OrekitIllegalArgumentException(OrekitMessages.POSITIVE_FLOW_RATE, q); } yDot[6] += q; } } /** Estimate tolerance vectors for integrators. * <p> * The errors are estimated from partial derivatives properties of orbits, * starting from a scalar position error specified by the user. * Considering the energy conservation equation V = sqrt(mu (2/r - 1/a)), * we get at constant energy (i.e. on a Keplerian trajectory): * <pre> * V² r |dV| = mu |dr| * </pre> * <p> So we deduce a scalar velocity error consistent with the position error. * From here, we apply orbits Jacobians matrices to get consistent errors * on orbital parameters. * * <p> * The tolerances are only <em>orders of magnitude</em>, and integrator tolerances * are only local estimates, not global ones. So some care must be taken when using * these tolerances. Setting 1mm as a position error does NOT mean the tolerances * will guarantee a 1mm error position after several orbits integration. * </p> * @param dP user specified position error * @param orbit reference orbit * @param type propagation type for the meaning of the tolerance vectors elements * (it may be different from {@code orbit.getType()}) * @return a two rows array, row 0 being the absolute tolerance error and row 1 * being the relative tolerance error * @exception OrekitException if Jacobian is singular */ public static double[][] tolerances(final double dP, final Orbit orbit, final OrbitType type) throws OrekitException { // estimate the scalar velocity error final PVCoordinates pv = orbit.getPVCoordinates(); final double r2 = pv.getPosition().getNormSq(); final double v = pv.getVelocity().getNorm(); final double dV = orbit.getMu() * dP / (v * r2); final double[] absTol = new double[7]; final double[] relTol = new double[7]; // we set the mass tolerance arbitrarily to 1.0e-6 kg, as mass evolves linearly // with trust, this often has no influence at all on propagation absTol[6] = 1.0e-6; if (type == OrbitType.CARTESIAN) { absTol[0] = dP; absTol[1] = dP; absTol[2] = dP; absTol[3] = dV; absTol[4] = dV; absTol[5] = dV; } else { // convert the orbit to the desired type final double[][] jacobian = new double[6][6]; final Orbit converted = type.convertType(orbit); converted.getJacobianWrtCartesian(PositionAngle.TRUE, jacobian); for (int i = 0; i < 6; ++i) { final double[] row = jacobian[i]; absTol[i] = FastMath.abs(row[0]) * dP + FastMath.abs(row[1]) * dP + FastMath.abs(row[2]) * dP + FastMath.abs(row[3]) * dV + FastMath.abs(row[4]) * dV + FastMath.abs(row[5]) * dV; if (Double.isNaN(absTol[i])) { throw new OrekitException(OrekitMessages.SINGULAR_JACOBIAN_FOR_ORBIT_TYPE, type); } } } Arrays.fill(relTol, dP / FastMath.sqrt(r2)); return new double[][] { absTol, relTol }; } }