/* Copyright 2011-2012 Space Applications Services * Licensed to CS Communication & Systèmes (CS) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * CS licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.orekit.models.earth; import org.hipparchus.util.FastMath; /** The Marini-Murray tropospheric delay model for laser ranging. * * @see "Marini, J.W., and C.W. Murray, correction of Laser Range Tracking Data for * Atmospheric Refraction at Elevations Above 10 degrees, X-591-73-351, NASA GSFC, 1973" * * @author Joris Olympio */ public class MariniMurrayModel implements TroposphericModel { /** Serializable UID. */ private static final long serialVersionUID = 8442906721207317886L; /** The temperature at the station, K. */ private double T0; /** The atmospheric pressure, mbar. */ private double P0; /** water vapor pressure at the laser site, mbar. */ private double e0; /** Geodetic site latitude, radians. */ private double latitude; /** Laser wavelength, micrometers. */ private double lambda; /** Create a new Marini-Murray model for the troposphere using the given * environmental conditions. * @param t0 the temperature at the station, K * @param p0 the atmospheric pressure at the station, mbar * @param rh the humidity at the station, percent (50% -> 0.5) * @param latitude site latitude * @param lambda laser wavelength (c/f), nm */ public MariniMurrayModel(final double t0, final double p0, final double rh, final double latitude, final double lambda) { this.T0 = t0; this.P0 = p0; this.e0 = getWaterVapor(rh); this.latitude = latitude; this.lambda = lambda * 1e-3; } /** Create a new Marini-Murray model using a standard atmosphere model. * * <ul> * <li>temperature: 20 degree Celsius * <li>pressure: 1013.25 mbar * <li>humidity: 50% * </ul> * * @param latitude site latitude * @param frequency laser frequency, Hz * * @return a Saastamoinen model with standard environmental values */ public static MariniMurrayModel getStandardModel(final double latitude, final double frequency) { return new MariniMurrayModel(273.15 + 20, 1013.25, 0.5, latitude, frequency); } @Override public double pathDelay(final double elevation, final double height) { final double A = 0.002357 * P0 + 0.000141 * e0; final double K = 1.163 * 0.00968 * FastMath.cos(2 * latitude) - 0.00104 * T0 + 0.00001435 * P0; final double B = (1.084 * 1e-8) * P0 * T0 * K + (4.734 * 1e-8) * P0 * (P0 / T0) * (2 * K) / (3 * K - 1); final double flambda = getLaserFrequencyParameter(); final double fsite = getSiteFunctionValue(height / 1000.); final double sinE = FastMath.sin(elevation); final double dR = (flambda / fsite) * (A + B) / (sinE + B / ((A + B) * (sinE + 0.01)) ); return dR; } /** Get the laser frequency parameter f(lambda). * It is one for Ruby laser (lambda = 0.6943 micron) * For infrared lasers, f(lambda) = 0.97966. * * @return the laser frequency parameter f(lambda). */ private double getLaserFrequencyParameter() { return 0.9650 + 0.0164 * FastMath.pow(lambda, -2) + 0.000228 * FastMath.pow(lambda, -4); } /** Get the laser frequency parameter f(lambda). * * @param height height above the geoid, km * @return the laser frequency parameter f(lambda). */ private double getSiteFunctionValue(final double height) { return 1. - 0.0026 * FastMath.cos(2 * latitude) - 0.00031 * height; } /** Get the water vapor. * The water vapor model is the one of Giacomo and Davis as indicated in IERS TN 32, chap. 9. * * See: Giacomo, P., Equation for the dertermination of the density of moist air, Metrologia, V. 18, 1982 * * @param rh relative humidity, in percent. * @return the water vapor, in mbar (1 mbar = 100 Pa). */ private double getWaterVapor(final double rh) { // saturation water vapor, equation (3) of reference paper, in mbar // with amended 1991 values (see reference paper) final double es = 0.01 * FastMath.exp((1.2378847 * 1e-5) * T0 * T0 - (1.9121316 * 1e-2) * T0 + 33.93711047 - (6.3431645 * 1e3) * 1. / T0); // enhancement factor, equation (4) of reference paper final double fw = 1.00062 + (3.14 * 1e-6) * P0 + (5.6 * 1e-7) * FastMath.pow(T0 - 273.15, 2); final double e = rh * fw * es; return e; } }