/* Copyright (c) 2001-2009, The HSQL Development Group * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the HSQL Development Group nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL HSQL DEVELOPMENT GROUP, HSQLDB.ORG, * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ package org.hsqldb.lib; import java.lang.reflect.Array; /** * Collection of static methods for operations on arrays * * @author Fred Toussi (fredt@users dot sourceforge.net) * @version 1.9.0 * @since 1.7.2 */ public class ArrayUtil { public static final int CLASS_CODE_BYTE = 'B'; public static final int CLASS_CODE_CHAR = 'C'; public static final int CLASS_CODE_DOUBLE = 'D'; public static final int CLASS_CODE_FLOAT = 'F'; public static final int CLASS_CODE_INT = 'I'; public static final int CLASS_CODE_LONG = 'J'; public static final int CLASS_CODE_OBJECT = 'L'; public static final int CLASS_CODE_SHORT = 'S'; public static final int CLASS_CODE_BOOLEAN = 'Z'; private static IntValueHashMap classCodeMap = new IntValueHashMap(); static { classCodeMap.put(byte.class, ArrayUtil.CLASS_CODE_BYTE); classCodeMap.put(char.class, ArrayUtil.CLASS_CODE_SHORT); classCodeMap.put(short.class, ArrayUtil.CLASS_CODE_SHORT); classCodeMap.put(int.class, ArrayUtil.CLASS_CODE_INT); classCodeMap.put(long.class, ArrayUtil.CLASS_CODE_LONG); classCodeMap.put(float.class, ArrayUtil.CLASS_CODE_FLOAT); classCodeMap.put(double.class, ArrayUtil.CLASS_CODE_DOUBLE); classCodeMap.put(boolean.class, ArrayUtil.CLASS_CODE_BOOLEAN); classCodeMap.put(Object.class, ArrayUtil.CLASS_CODE_OBJECT); } /** * Returns a distinct int code for each primitive type and for all Object types. */ static int getClassCode(Class cla) { if (!cla.isPrimitive()) { return ArrayUtil.CLASS_CODE_OBJECT; } return classCodeMap.get(cla, -1); } /** * Clears an area of the given array of the given type. */ public static void clearArray(int type, Object data, int from, int to) { switch (type) { case ArrayUtil.CLASS_CODE_BYTE : { byte[] array = (byte[]) data; while (--to >= from) { array[to] = 0; } return; } case ArrayUtil.CLASS_CODE_CHAR : { byte[] array = (byte[]) data; while (--to >= from) { array[to] = 0; } return; } case ArrayUtil.CLASS_CODE_SHORT : { short[] array = (short[]) data; while (--to >= from) { array[to] = 0; } return; } case ArrayUtil.CLASS_CODE_INT : { int[] array = (int[]) data; while (--to >= from) { array[to] = 0; } return; } case ArrayUtil.CLASS_CODE_LONG : { long[] array = (long[]) data; while (--to >= from) { array[to] = 0; } return; } case ArrayUtil.CLASS_CODE_FLOAT : { float[] array = (float[]) data; while (--to >= from) { array[to] = 0; } return; } case ArrayUtil.CLASS_CODE_DOUBLE : { double[] array = (double[]) data; while (--to >= from) { array[to] = 0; } return; } case ArrayUtil.CLASS_CODE_BOOLEAN : { boolean[] array = (boolean[]) data; while (--to >= from) { array[to] = false; } return; } default : { Object[] array = (Object[]) data; while (--to >= from) { array[to] = null; } return; } } } /** * Moves the contents of an array to allow both addition and removal of * elements. Used arguments must be in range. * * @param type class type of the array * @param array the array * @param usedElements count of elements of array in use * @param index point at which to add or remove elements * @param count number of elements to add or remove */ public static void adjustArray(int type, Object array, int usedElements, int index, int count) { if (index >= usedElements) { return; } int newCount = usedElements + count; int source; int target; int size; if (count >= 0) { source = index; target = index + count; size = usedElements - index; } else { source = index - count; target = index; size = usedElements - index + count; } if (size > 0) { System.arraycopy(array, source, array, target, size); } if (count < 0) { clearArray(type, array, newCount, usedElements); } } /** * Basic sort for small arrays of int. */ public static void sortArray(int[] array) { boolean swapped; do { swapped = false; for (int i = 0; i < array.length - 1; i++) { if (array[i] > array[i + 1]) { int temp = array[i + 1]; array[i + 1] = array[i]; array[i] = temp; swapped = true; } } } while (swapped); } /** * Basic find for small arrays of Object. */ public static int find(Object[] array, Object object) { for (int i = 0; i < array.length; i++) { if (array[i] == object) { // hadles both nulls return i; } if (object != null && object.equals(array[i])) { return i; } } return -1; } /** * Basic find for small arrays of int. */ public static int find(int[] array, int value) { for (int i = 0; i < array.length; i++) { if (array[i] == value) { return i; } } return -1; } public static int find(short[] array, int value) { for (int i = 0; i < array.length; i++) { if (array[i] == value) { return i; } } return -1; } public static int find(short[] array, int value, int offset, int count) { for (int i = offset; i < offset + count; i++) { if (array[i] == value) { return i; } } return -1; } /** * Finds the first element of the array that is not equal to the given value. */ public static int findNot(int[] array, int value) { for (int i = 0; i < array.length; i++) { if (array[i] != value) { return i; } } return -1; } /** * Returns true if arra and arrb contain the same set of integers, not * necessarily in the same order. This implies the arrays are of the same * length. */ public static boolean areEqualSets(int[] arra, int[] arrb) { return arra.length == arrb.length && ArrayUtil.haveEqualSets(arra, arrb, arra.length); } /** * For full == true returns true if arra and arrb are identical (have the * same length and contain the same integers in the same sequence). * * For full == false returns the result * of haveEqualArrays(arra,arrb,count) * * For full == true, the array lengths must be the same as count * */ public static boolean areEqual(int[] arra, int[] arrb, int count, boolean full) { if (ArrayUtil.haveEqualArrays(arra, arrb, count)) { if (full) { return arra.length == arrb.length && count == arra.length; } return true; } return false; } /** * Returns true if the first count elements of arra and arrb are identical * sets of integers (not necessarily in the same order). * */ public static boolean haveEqualSets(int[] arra, int[] arrb, int count) { if (ArrayUtil.haveEqualArrays(arra, arrb, count)) { return true; } if (count > arra.length || count > arrb.length) { return false; } if (count == 1) { return arra[0] == arrb[0]; } int[] tempa = (int[]) resizeArray(arra, count); int[] tempb = (int[]) resizeArray(arrb, count); sortArray(tempa); sortArray(tempb); for (int j = 0; j < count; j++) { if (tempa[j] != tempb[j]) { return false; } } return true; } /** * Returns true if the first count elements of arra and arrb are identical * subarrays of integers * */ public static boolean haveEqualArrays(int[] arra, int[] arrb, int count) { if (count > arra.length || count > arrb.length) { return false; } for (int j = 0; j < count; j++) { if (arra[j] != arrb[j]) { return false; } } return true; } /** * Returns true if the first count elements of arra and arrb are identical * subarrays of Objects * */ public static boolean haveEqualArrays(Object[] arra, Object[] arrb, int count) { if (count > arra.length || count > arrb.length) { return false; } for (int j = 0; j < count; j++) { if (arra[j] != arrb[j]) { if (arra[j] == null || !arra[j].equals(arrb[j])) { return false; } } } return true; } /** * Returns true if arra and the first bcount elements of arrb share any * element. <p> * * Used for checks for any overlap between two arrays of column indexes. */ public static boolean haveCommonElement(int[] arra, int[] arrb, int bcount) { for (int i = 0; i < arra.length; i++) { int c = arra[i]; for (int j = 0; j < bcount; j++) { if (c == arrb[j]) { return true; } } } return false; } /** * Returns an int[] containing elements shared between the two arrays * arra and arrb. The arrays contain sets (no value is repeated). * * Used to find the overlap between two arrays of column indexes. * Ordering of the result arrays will be the same as in array * a. The method assumes that each index is only listed * once in the two input arrays. * <p> * e.g. * </p> * <code> * <table width="90%" bgcolor="lightblue"> * <tr><td colspane="3">The arrays</td></tr> * <tr><td>int []arra</td><td>=</td><td>{2,11,5,8}</td></tr> * <tr><td>int []arrb</td><td>=</td><td>{20,8,10,11,28,12}</td></tr> * <tr><td colspane="3">will result in:</td></tr> * <tr><td>int []arrc</td><td>=</td><td>{11,8}</td></tr> * </table> * * @param arra int[]; first column indexes * @param arrb int[]; second column indexes * @return int[] common indexes or <code>null</code> if there is no overlap. */ public static int[] commonElements(int[] arra, int[] arrb) { int[] c = null; int n = countCommonElements(arra, arrb); if (n > 0) { c = new int[n]; int k = 0; for (int i = 0; i < arra.length; i++) { for (int j = 0; j < arrb.length; j++) { if (arra[i] == arrb[j]) { c[k++] = arra[i]; } } } } return c; } /** * Returns the number of elements shared between the two arrays containing * sets.<p> * * Return the number of elements shared by two column index arrays. * This method assumes that each of these arrays contains a set (each * element index is listed only once in each index array). Otherwise the * returned number will NOT represent the number of unique column indexes * shared by both index array. * * @param arra int[]; first array of column indexes. * * @param arrb int[]; second array of column indexes * * @return int; number of elements shared by <code>a</code> and <code>b</code> */ public static int countCommonElements(int[] arra, int[] arrb) { int k = 0; for (int i = 0; i < arra.length; i++) { for (int j = 0; j < arrb.length; j++) { if (arra[i] == arrb[j]) { k++; } } } return k; } /** * Returns the count of elements in arra from position start that are * sequentially equal to the elements of arrb. */ public static int countSameElements(byte[] arra, int start, byte[] arrb) { int k = 0; int limit = arra.length - start; if (limit > arrb.length) { limit = arrb.length; } for (int i = 0; i < limit; i++) { if (arra[i + start] == arrb[i]) { k++; } else { break; } } return k; } /** * Returns the count of elements in arra from position start that are * sequentially equal to the elements of arrb. */ public static int countSameElements(char[] arra, int start, char[] arrb) { int k = 0; int limit = arra.length - start; if (limit > arrb.length) { limit = arrb.length; } for (int i = 0; i < limit; i++) { if (arra[i + start] == arrb[i]) { k++; } else { break; } } return k; } /** * Returns the index of the first occurence of arrb in arra. Or -1 if not found. */ public static int find(byte[] arra, int start, int limit, byte[] arrb) { int k = start; limit = limit - arrb.length + 1; int value = arrb[0]; for (; k < limit; k++) { if (arra[k] == value) { if (arrb.length == 1) { return k; } if (containsAt(arra, k, arrb)) { return k; } } } return -1; } /** * Returns an index into arra (or -1) where the character is not in the * charset byte array. */ public static int findNotIn(byte[] arra, int start, int limit, byte[] charset) { int k = 0; for (; k < limit; k++) { for (int i = 0; i < charset.length; i++) { if (arra[k] == charset[i]) { continue; } } return k; } return -1; } /** * Returns an index into arra (or -1) where the character is in the * byteSet byte array. */ public static int findIn(byte[] arra, int start, int limit, byte[] byteSet) { int k = 0; for (; k < limit; k++) { for (int i = 0; i < byteSet.length; i++) { if (arra[k] == byteSet[i]) { return k; } } } return -1; } /** * Returns the index of b or c in arra. Or -1 if not found. */ public static int find(byte[] arra, int start, int limit, int b, int c) { int k = 0; for (; k < limit; k++) { if (arra[k] == b || arra[k] == c) { return k; } } return -1; } /** * Set elements of arrb true if their indexes appear in arrb. */ public static void intIndexesToBooleanArray(int[] arra, boolean[] arrb) { for (int i = 0; i < arra.length; i++) { if (arra[i] < arrb.length) { arrb[arra[i]] = true; } } } public static void orBooleanArray(boolean[] source, boolean[] dest) { for (int i = 0; i < dest.length; i++) { dest[i] |= source[i]; } } public static boolean areIntIndexesInBooleanArray(int[] arra, boolean[] arrb) { for (int i = 0; i < arra.length; i++) { if (arrb[arra[i]]) { continue; } return false; } return true; } /** * Return true if for each true element in arrb, the corresponding * element in arra is true */ public static boolean containsAllTrueElements(boolean[] arra, boolean[] arrb) { for (int i = 0; i < arra.length; i++) { if (arrb[i] && !arra[i]) { return false; } } return true; } /** * Return count of true elements in array */ public static int countTrueElements(boolean[] arra) { int count = 0; for (int i = 0; i < arra.length; i++) { if (arra[i]) { count++; } } return count; } /** * Determines if the array has a null column for any of the positions given * in the rowColMap array. */ public static boolean hasNull(Object[] array, int[] columnMap) { int count = columnMap.length; for (int i = 0; i < count; i++) { if (array[columnMap[i]] == null) { return true; } } return false; } public static boolean hasAllNull(Object[] array, int[] columnMap) { int count = columnMap.length; for (int i = 0; i < count; i++) { if (array[columnMap[i]] != null) { return false; } } return true; } /** * Returns true if arra from position start contains all elements of arrb * in sequential order. */ public static boolean containsAt(byte[] arra, int start, byte[] arrb) { return countSameElements(arra, start, arrb) == arrb.length; } /** * Returns the count of elements in arra from position start that are * among the elements of arrb. Stops at any element not in arrb. */ public static int countStartElementsAt(byte[] arra, int start, byte[] arrb) { int k = 0; mainloop: for (int i = start; i < arra.length; i++) { for (int j = 0; j < arrb.length; j++) { if (arra[i] == arrb[j]) { k++; continue mainloop; } } break; } return k; } /** * Returns true if arra from position start contains all elements of arrb * in sequential order. */ public static boolean containsAt(char[] arra, int start, char[] arrb) { return countSameElements(arra, start, arrb) == arrb.length; } /** * Returns the count of elements in arra from position start that are not * among the elements of arrb. * */ public static int countNonStartElementsAt(byte[] arra, int start, byte[] arrb) { int k = 0; mainloop: for (int i = start; i < arra.length; i++) { for (int j = 0; j < arrb.length; j++) { if (arra[i] == arrb[j]) { break mainloop; } } k++; } return k; } /** * Convenience wrapper for System.arraycopy(). */ public static void copyArray(Object source, Object dest, int count) { System.arraycopy(source, 0, dest, 0, count); } /** * Returns a range of elements of source from start to end of the array. */ public static int[] arraySlice(int[] source, int start, int count) { int[] slice = new int[count]; System.arraycopy(source, start, slice, 0, count); return slice; } /** * Fills the array with a value. */ public static void fillArray(Object[] array, Object value) { int to = array.length; while (--to >= 0) { array[to] = value; } } /** * Fills the int array with a value */ public static void fillArray(int[] array, int value) { int to = array.length; while (--to >= 0) { array[to] = value; } } /** * Returns a duplicates of an array. */ public static Object duplicateArray(Object source) { int size = Array.getLength(source); Object newarray = Array.newInstance(source.getClass().getComponentType(), size); System.arraycopy(source, 0, newarray, 0, size); return newarray; } /** * Returns the given array if newsize is the same as existing. * Returns a new array of given size, containing as many elements of * the original array as it can hold. */ public static Object resizeArrayIfDifferent(Object source, int newsize) { int oldsize = Array.getLength(source); if (oldsize == newsize) { return source; } Object newarray = Array.newInstance(source.getClass().getComponentType(), newsize); if (oldsize < newsize) { newsize = oldsize; } System.arraycopy(source, 0, newarray, 0, newsize); return newarray; } /** * Returns a new array of given size, containing as many elements of * the original array as it can hold. N.B. Always returns a new array * even if newsize parameter is the same as the old size. */ public static Object resizeArray(Object source, int newsize) { Object newarray = Array.newInstance(source.getClass().getComponentType(), newsize); int oldsize = Array.getLength(source); if (oldsize < newsize) { newsize = oldsize; } System.arraycopy(source, 0, newarray, 0, newsize); return newarray; } /** * Returns an array containing the elements of parameter source, with one * element removed or added. Parameter adjust {-1, +1} indicates the * operation. Parameter colindex indicates the position at which an element * is removed or added. Parameter addition is an Object to add when * adjust is +1. */ public static Object toAdjustedArray(Object source, Object addition, int colindex, int adjust) { int newsize = Array.getLength(source) + adjust; Object newarray = Array.newInstance(source.getClass().getComponentType(), newsize); copyAdjustArray(source, newarray, addition, colindex, adjust); return newarray; } /** * Copies elements of source to dest. If adjust is -1 the element at * colindex is not copied. If adjust is +1 that element is filled with * the Object addition. All the rest of the elements in source are * shifted left or right accordingly when they are copied. If adjust is 0 * the addition is copied over the element at colindex. * * No checks are perfomed on array sizes and an exception is thrown * if they are not consistent with the other arguments. */ public static void copyAdjustArray(Object source, Object dest, Object addition, int colindex, int adjust) { int length = Array.getLength(source); if (colindex < 0) { System.arraycopy(source, 0, dest, 0, length); return; } System.arraycopy(source, 0, dest, 0, colindex); if (adjust == 0) { int endcount = length - colindex - 1; Array.set(dest, colindex, addition); if (endcount > 0) { System.arraycopy(source, colindex + 1, dest, colindex + 1, endcount); } } else if (adjust < 0) { int endcount = length - colindex - 1; if (endcount > 0) { System.arraycopy(source, colindex + 1, dest, colindex, endcount); } } else { int endcount = length - colindex; Array.set(dest, colindex, addition); if (endcount > 0) { System.arraycopy(source, colindex, dest, colindex + 1, endcount); } } } /** * Returns a new array with the elements in collar adjusted to reflect * changes at colindex. <p> * * Each element in collarr represents an index into another array * otherarr. <p> * * colindex is the index at which an element is added or removed. * Each element in the result array represents the new, * adjusted index. <p> * * For each element of collarr that represents an index equal to * colindex and adjust is -1, the result will not contain that element * and will be shorter than collar by one element. * * @param colarr the source array * @param colindex index at which to perform adjustement * @param adjust +1, 0 or -1 * @return new, adjusted array */ public static int[] toAdjustedColumnArray(int[] colarr, int colindex, int adjust) { if (colarr == null) { return null; } if (colindex < 0) { return colarr; } int[] intarr = new int[colarr.length]; int j = 0; for (int i = 0; i < colarr.length; i++) { if (colarr[i] > colindex) { intarr[j] = colarr[i] + adjust; j++; } else if (colarr[i] == colindex) { if (adjust < 0) { // skip an element from colarr } else { intarr[j] = colarr[i] + adjust; j++; } } else { intarr[j] = colarr[i]; j++; } } if (colarr.length != j) { int[] newarr = new int[j]; copyArray(intarr, newarr, j); return newarr; } return intarr; } /** * Copies some elements of row into newRow by using columnMap as * the list of indexes into row. <p> * * columnMap and newRow are of equal length and are normally * shorter than row. <p> * * @param row the source array * @param columnMap the list of indexes into row * @param newRow the destination array */ public static void projectRow(Object[] row, int[] columnMap, Object[] newRow) { for (int i = 0; i < columnMap.length; i++) { newRow[i] = row[columnMap[i]]; } } public static void projectRow(int[] row, int[] columnMap, int[] newRow) { for (int i = 0; i < columnMap.length; i++) { newRow[i] = row[columnMap[i]]; } } /** * As above but copies in reverse direction. <p> * * @param row the target array * @param columnMap the list of indexes into row * @param newRow the source array */ public static void projectRowReverse(Object[] row, int[] columnMap, Object[] newRow) { for (int i = 0; i < columnMap.length; i++) { row[columnMap[i]] = newRow[i]; } } /* public static void copyColumnValues(int[] row, int[] colindex, int[] colobject) { for (int i = 0; i < colindex.length; i++) { colobject[i] = row[colindex[i]]; } } public static void copyColumnValues(boolean[] row, int[] colindex, boolean[] colobject) { for (int i = 0; i < colindex.length; i++) { colobject[i] = row[colindex[i]]; } } public static void copyColumnValues(byte[] row, int[] colindex, byte[] colobject) { for (int i = 0; i < colindex.length; i++) { colobject[i] = row[colindex[i]]; } } */ public static void projectMap(int[] mainMap, int[] subMap, int[] newSubMap) { for (int i = 0; i < subMap.length; i++) { for (int j = 0; j < mainMap.length; j++) { if (subMap[i] == mainMap[j]) { newSubMap[i] = j; break; } } } } public static void fillSequence(int[] colindex) { for (int i = 0; i < colindex.length; i++) { colindex[i] = i; } } }