/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * Normalize.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.filters.unsupervised.attribute; import java.util.Enumeration; import java.util.Vector; import weka.core.Capabilities; import weka.core.Capabilities.Capability; import weka.core.DenseInstance; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.SparseInstance; import weka.core.Utils; import weka.filters.Sourcable; import weka.filters.UnsupervisedFilter; /** <!-- globalinfo-start --> * Normalizes all numeric values in the given dataset (apart from the class attribute, if set). The resulting values are by default in [0,1] for the data used to compute the normalization intervals. But with the scale and translation parameters one can change that, e.g., with scale = 2.0 and translation = -1.0 you get values in the range [-1,+1]. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -unset-class-temporarily * Unsets the class index temporarily before the filter is * applied to the data. * (default: no)</pre> * * <pre> -S <num> * The scaling factor for the output range. * (default: 1.0)</pre> * * <pre> -T <num> * The translation of the output range. * (default: 0.0)</pre> * <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 8034 $ */ public class Normalize extends PotentialClassIgnorer implements UnsupervisedFilter, Sourcable, OptionHandler { /** for serialization. */ static final long serialVersionUID = -8158531150984362898L; /** The minimum values for numeric attributes. */ protected double[] m_MinArray; /** The maximum values for numeric attributes. */ protected double[] m_MaxArray; /** The translation of the output range. */ protected double m_Translation = 0; /** The scaling factor of the output range. */ protected double m_Scale = 1.0; /** * Returns a string describing this filter. * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Normalizes all numeric values in the given dataset (apart from the " + "class attribute, if set). The resulting values are by default " + "in [0,1] for the data used to compute the normalization intervals. " + "But with the scale and translation parameters one can change that, " + "e.g., with scale = 2.0 and translation = -1.0 you get values in the " + "range [-1,+1]."; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector result = new Vector(); Enumeration en = super.listOptions(); while (en.hasMoreElements()) result.addElement(en.nextElement()); result.addElement(new Option( "\tThe scaling factor for the output range.\n" + "\t(default: 1.0)", "S", 1, "-S <num>")); result.addElement(new Option( "\tThe translation of the output range.\n" +"\t(default: 0.0)", "T", 1,"-T <num>")); return result.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -unset-class-temporarily * Unsets the class index temporarily before the filter is * applied to the data. * (default: no)</pre> * * <pre> -S <num> * The scaling factor for the output range. * (default: 1.0)</pre> * * <pre> -T <num> * The translation of the output range. * (default: 0.0)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; tmpStr = Utils.getOption('S', options); if (tmpStr.length() != 0) setScale(Double.parseDouble(tmpStr)); else setScale(1.0); tmpStr = Utils.getOption('T', options); if (tmpStr.length() != 0) setTranslation(Double.parseDouble(tmpStr)); else setTranslation(0.0); if (getInputFormat() != null) setInputFormat(getInputFormat()); } /** * Gets the current settings of the filter. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector<String> result; result = new Vector<String>(); result.add("-S"); result.add("" + getScale()); result.add("-T"); result.add("" + getTranslation()); return result.toArray(new String[result.size()]); } /** * Returns the Capabilities of this filter. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enableAllAttributes(); result.enable(Capability.MISSING_VALUES); // class result.enableAllClasses(); result.enable(Capability.MISSING_CLASS_VALUES); result.enable(Capability.NO_CLASS); return result; } /** * Sets the format of the input instances. * * @param instanceInfo an Instances object containing the input * instance structure (any instances contained in * the object are ignored - only the structure is * required). * @return true if the outputFormat may be collected * immediately * @throws Exception if the input format can't be set successfully */ public boolean setInputFormat(Instances instanceInfo) throws Exception { super.setInputFormat(instanceInfo); setOutputFormat(instanceInfo); m_MinArray = m_MaxArray = null; return true; } /** * Input an instance for filtering. Filter requires all * training instances be read before producing output. * * @param instance the input instance * @return true if the filtered instance may now be * collected with output(). * @throws Exception if an error occurs * @throws IllegalStateException if no input format has been set. */ public boolean input(Instance instance) throws Exception { if (getInputFormat() == null) throw new IllegalStateException("No input instance format defined"); if (m_NewBatch) { resetQueue(); m_NewBatch = false; } if (m_MinArray == null) { bufferInput(instance); return false; } else { convertInstance(instance); return true; } } /** * Signify that this batch of input to the filter is finished. * If the filter requires all instances prior to filtering, * output() may now be called to retrieve the filtered instances. * * @return true if there are instances pending output * @throws Exception if an error occurs * @throws IllegalStateException if no input structure has been defined */ public boolean batchFinished() throws Exception { if (getInputFormat() == null) throw new IllegalStateException("No input instance format defined"); if (m_MinArray == null) { Instances input = getInputFormat(); // Compute minimums and maximums m_MinArray = new double[input.numAttributes()]; m_MaxArray = new double[input.numAttributes()]; for (int i = 0; i < input.numAttributes(); i++) m_MinArray[i] = Double.NaN; for (int j = 0; j < input.numInstances(); j++) { double[] value = input.instance(j).toDoubleArray(); for (int i = 0; i < input.numAttributes(); i++) { if (input.attribute(i).isNumeric() && (input.classIndex() != i)) { if (!Utils.isMissingValue(value[i])) { if (Double.isNaN(m_MinArray[i])) { m_MinArray[i] = m_MaxArray[i] = value[i]; } else { if (value[i] < m_MinArray[i]) m_MinArray[i] = value[i]; if (value[i] > m_MaxArray[i]) m_MaxArray[i] = value[i]; } } } } } // Convert pending input instances for (int i = 0; i < input.numInstances(); i++) convertInstance(input.instance(i)); } // Free memory flushInput(); m_NewBatch = true; return (numPendingOutput() != 0); } /** * Convert a single instance over. The converted instance is * added to the end of the output queue. * * @param instance the instance to convert * @throws Exception if conversion fails */ protected void convertInstance(Instance instance) throws Exception { Instance inst = null; if (instance instanceof SparseInstance) { double[] newVals = new double[instance.numAttributes()]; int[] newIndices = new int[instance.numAttributes()]; double[] vals = instance.toDoubleArray(); int ind = 0; for (int j = 0; j < instance.numAttributes(); j++) { double value; if (instance.attribute(j).isNumeric() && (!Utils.isMissingValue(vals[j])) && (getInputFormat().classIndex() != j)) { if (Double.isNaN(m_MinArray[j]) || (m_MaxArray[j] == m_MinArray[j])) { value = 0; } else { value = (vals[j] - m_MinArray[j]) / (m_MaxArray[j] - m_MinArray[j]) * m_Scale + m_Translation; if (Double.isNaN(value)) { throw new Exception("A NaN value was generated " + "while normalizing " + instance.attribute(j).name()); } } if (value != 0.0) { newVals[ind] = value; newIndices[ind] = j; ind++; } } else { value = vals[j]; if (value != 0.0) { newVals[ind] = value; newIndices[ind] = j; ind++; } } } double[] tempVals = new double[ind]; int[] tempInd = new int[ind]; System.arraycopy(newVals, 0, tempVals, 0, ind); System.arraycopy(newIndices, 0, tempInd, 0, ind); inst = new SparseInstance(instance.weight(), tempVals, tempInd, instance.numAttributes()); } else { double[] vals = instance.toDoubleArray(); for (int j = 0; j < getInputFormat().numAttributes(); j++) { if (instance.attribute(j).isNumeric() && (!Utils.isMissingValue(vals[j])) && (getInputFormat().classIndex() != j)) { if (Double.isNaN(m_MinArray[j]) || (m_MaxArray[j] == m_MinArray[j])) { vals[j] = 0; } else { vals[j] = (vals[j] - m_MinArray[j]) / (m_MaxArray[j] - m_MinArray[j]) * m_Scale + m_Translation; if (Double.isNaN(vals[j])) { throw new Exception("A NaN value was generated " + "while normalizing " + instance.attribute(j).name()); } } } } inst = new DenseInstance(instance.weight(), vals); } inst.setDataset(instance.dataset()); push(inst); } /** * Returns a string that describes the filter as source. The * filter will be contained in a class with the given name (there may * be auxiliary classes), * and will contain two methods with these signatures: * <pre><code> * // converts one row * public static Object[] filter(Object[] i); * // converts a full dataset (first dimension is row index) * public static Object[][] filter(Object[][] i); * </code></pre> * where the array <code>i</code> contains elements that are either * Double, String, with missing values represented as null. The generated * code is public domain and comes with no warranty. * * @param className the name that should be given to the source class. * @param data the dataset used for initializing the filter * @return the object source described by a string * @throws Exception if the source can't be computed */ public String toSource(String className, Instances data) throws Exception { StringBuffer result; boolean[] process; int i; result = new StringBuffer(); // determine what attributes were processed process = new boolean[data.numAttributes()]; for (i = 0; i < data.numAttributes(); i++) process[i] = (data.attribute(i).isNumeric() && (i != data.classIndex())); result.append("class " + className + " {\n"); result.append("\n"); result.append(" /** lists which attributes will be processed */\n"); result.append(" protected final static boolean[] PROCESS = new boolean[]{" + Utils.arrayToString(process) + "};\n"); result.append("\n"); result.append(" /** the minimum values for numeric values */\n"); result.append(" protected final static double[] MIN = new double[]{" + Utils.arrayToString(m_MinArray).replaceAll("NaN", "Double.NaN") + "};\n"); result.append("\n"); result.append(" /** the maximum values for numeric values */\n"); result.append(" protected final static double[] MAX = new double[]{" + Utils.arrayToString(m_MaxArray) + "};\n"); result.append("\n"); result.append(" /** the scale factor */\n"); result.append(" protected final static double SCALE = " + m_Scale + ";\n"); result.append("\n"); result.append(" /** the translation */\n"); result.append(" protected final static double TRANSLATION = " + m_Translation + ";\n"); result.append("\n"); result.append(" /**\n"); result.append(" * filters a single row\n"); result.append(" * \n"); result.append(" * @param i the row to process\n"); result.append(" * @return the processed row\n"); result.append(" */\n"); result.append(" public static Object[] filter(Object[] i) {\n"); result.append(" Object[] result;\n"); result.append("\n"); result.append(" result = new Object[i.length];\n"); result.append(" for (int n = 0; n < i.length; n++) {\n"); result.append(" if (PROCESS[n] && (i[n] != null)) {\n"); result.append(" if (Double.isNaN(MIN[n]) || (MIN[n] == MAX[n]))\n"); result.append(" result[n] = 0;\n"); result.append(" else\n"); result.append(" result[n] = (((Double) i[n]) - MIN[n]) / (MAX[n] - MIN[n]) * SCALE + TRANSLATION;\n"); result.append(" }\n"); result.append(" else {\n"); result.append(" result[n] = i[n];\n"); result.append(" }\n"); result.append(" }\n"); result.append("\n"); result.append(" return result;\n"); result.append(" }\n"); result.append("\n"); result.append(" /**\n"); result.append(" * filters multiple rows\n"); result.append(" * \n"); result.append(" * @param i the rows to process\n"); result.append(" * @return the processed rows\n"); result.append(" */\n"); result.append(" public static Object[][] filter(Object[][] i) {\n"); result.append(" Object[][] result;\n"); result.append("\n"); result.append(" result = new Object[i.length][];\n"); result.append(" for (int n = 0; n < i.length; n++) {\n"); result.append(" result[n] = filter(i[n]);\n"); result.append(" }\n"); result.append("\n"); result.append(" return result;\n"); result.append(" }\n"); result.append("}\n"); return result.toString(); } /** * Returns the calculated minimum values for the attributes in the data. * * @return the array with the minimum values */ public double[] getMinArray() { return m_MinArray; } /** * Returns the calculated maximum values for the attributes in the data. * * @return the array with the maximum values */ public double[] getMaxArray() { return m_MaxArray; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String scaleTipText() { return "The factor for scaling the output range (default: 1)."; } /** * Get the scaling factor. * * @return the factor */ public double getScale() { return m_Scale; } /** * Sets the scaling factor. * * @param value the scaling factor */ public void setScale(double value) { m_Scale = value; } /** * Returns the tip text for this property. * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String translationTipText() { return "The translation of the output range (default: 0)."; } /** * Get the translation. * * @return the translation */ public double getTranslation() { return m_Translation; } /** * Sets the translation. * * @param value the translation */ public void setTranslation(double value) { m_Translation = value; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8034 $"); } /** * Main method for running this filter. * * @param args should contain arguments to the filter, use -h for help */ public static void main(String[] args) { runFilter(new Normalize(), args); } }