/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * NNConditionalEstimator.java * Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand * */ package weka.estimators; import java.util.Random; import java.util.Vector; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.matrix.Matrix; /** * Conditional probability estimator for a numeric domain conditional upon * a numeric domain (using Mahalanobis distance). * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 8034 $ */ public class NNConditionalEstimator implements ConditionalEstimator { /** Vector containing all of the values seen */ private Vector m_Values = new Vector(); /** Vector containing all of the conditioning values seen */ private Vector m_CondValues = new Vector(); /** Vector containing the associated weights */ private Vector m_Weights = new Vector(); /** The sum of the weights so far */ private double m_SumOfWeights; /** Current Conditional mean */ private double m_CondMean; /** Current Values mean */ private double m_ValueMean; /** Current covariance matrix */ private Matrix m_Covariance; /** Whether we can optimise the kernel summation */ private boolean m_AllWeightsOne = true; /** 2 * PI */ private static double TWO_PI = 2 * Math.PI; // =============== // Private methods // =============== /** * Execute a binary search to locate the nearest data value * * @param key the data value to locate * @param secondaryKey the data value to locate * @return the index of the nearest data value */ private int findNearestPair(double key, double secondaryKey) { int low = 0; int high = m_CondValues.size(); int middle = 0; while (low < high) { middle = (low + high) / 2; double current = ((Double)m_CondValues.elementAt(middle)).doubleValue(); if (current == key) { double secondary = ((Double)m_Values.elementAt(middle)).doubleValue(); if (secondary == secondaryKey) { return middle; } if (secondary > secondaryKey) { high = middle; } else if (secondary < secondaryKey) { low = middle + 1; } } if (current > key) { high = middle; } else if (current < key) { low = middle + 1; } } return low; } /** Calculate covariance and value means */ private void calculateCovariance() { double sumValues = 0, sumConds = 0; for(int i = 0; i < m_Values.size(); i++) { sumValues += ((Double)m_Values.elementAt(i)).doubleValue() * ((Double)m_Weights.elementAt(i)).doubleValue(); sumConds += ((Double)m_CondValues.elementAt(i)).doubleValue() * ((Double)m_Weights.elementAt(i)).doubleValue(); } m_ValueMean = sumValues / m_SumOfWeights; m_CondMean = sumConds / m_SumOfWeights; double c00 = 0, c01 = 0, c10 = 0, c11 = 0; for(int i = 0; i < m_Values.size(); i++) { double x = ((Double)m_Values.elementAt(i)).doubleValue(); double y = ((Double)m_CondValues.elementAt(i)).doubleValue(); double weight = ((Double)m_Weights.elementAt(i)).doubleValue(); c00 += (x - m_ValueMean) * (x - m_ValueMean) * weight; c01 += (x - m_ValueMean) * (y - m_CondMean) * weight; c11 += (y - m_CondMean) * (y - m_CondMean) * weight; } c00 /= (m_SumOfWeights - 1.0); c01 /= (m_SumOfWeights - 1.0); c10 = c01; c11 /= (m_SumOfWeights - 1.0); m_Covariance = new Matrix(2, 2); m_Covariance.set(0, 0, c00); m_Covariance.set(0, 1, c01); m_Covariance.set(1, 0, c10); m_Covariance.set(1, 1, c11); } /** * Returns value for normal kernel * * @param x the argument to the kernel function * @param variance the variance * @return the value for a normal kernel */ private double normalKernel(double x, double variance) { return Math.exp(-x * x / (2 * variance)) / Math.sqrt(variance * TWO_PI); } /** * Add a new data value to the current estimator. * * @param data the new data value * @param given the new value that data is conditional upon * @param weight the weight assigned to the data value */ public void addValue(double data, double given, double weight) { int insertIndex = findNearestPair(given, data); if ((m_Values.size() <= insertIndex) || (((Double)m_CondValues.elementAt(insertIndex)).doubleValue() != given) || (((Double)m_Values.elementAt(insertIndex)).doubleValue() != data)) { m_CondValues.insertElementAt(new Double(given), insertIndex); m_Values.insertElementAt(new Double(data), insertIndex); m_Weights.insertElementAt(new Double(weight), insertIndex); if (weight != 1) { m_AllWeightsOne = false; } } else { double newWeight = ((Double)m_Weights.elementAt(insertIndex)) .doubleValue(); newWeight += weight; m_Weights.setElementAt(new Double(newWeight), insertIndex); m_AllWeightsOne = false; } m_SumOfWeights += weight; // Invalidate any previously calculated covariance matrix m_Covariance = null; } /** * Get a probability estimator for a value * * @param given the new value that data is conditional upon * @return the estimator for the supplied value given the condition */ public Estimator getEstimator(double given) { if (m_Covariance == null) { calculateCovariance(); } Estimator result = new MahalanobisEstimator(m_Covariance, given - m_CondMean, m_ValueMean); return result; } /** * Get a probability estimate for a value * * @param data the value to estimate the probability of * @param given the new value that data is conditional upon * @return the estimated probability of the supplied value */ public double getProbability(double data, double given) { return getEstimator(given).getProbability(data); } /** Display a representation of this estimator */ public String toString() { if (m_Covariance == null) { calculateCovariance(); } String result = "NN Conditional Estimator. " + m_CondValues.size() + " data points. Mean = " + Utils.doubleToString(m_ValueMean, 4, 2) + " Conditional mean = " + Utils.doubleToString(m_CondMean, 4, 2); result += " Covariance Matrix: \n" + m_Covariance; return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8034 $"); } /** * Main method for testing this class. * * @param argv should contain a sequence of numeric values */ public static void main(String [] argv) { try { int seed = 42; if (argv.length > 0) { seed = Integer.parseInt(argv[0]); } NNConditionalEstimator newEst = new NNConditionalEstimator(); // Create 100 random points and add them Random r = new Random(seed); int numPoints = 50; if (argv.length > 2) { numPoints = Integer.parseInt(argv[2]); } for(int i = 0; i < numPoints; i++) { int x = Math.abs(r.nextInt() % 100); int y = Math.abs(r.nextInt() % 100); System.out.println("# " + x + " " + y); newEst.addValue(x, y, 1); } // System.out.println(newEst); int cond; if (argv.length > 1) { cond = Integer.parseInt(argv[1]); } else cond = Math.abs(r.nextInt() % 100); System.out.println("## Conditional = " + cond); Estimator result = newEst.getEstimator(cond); for(int i = 0; i <= 100; i+= 5) { System.out.println(" " + i + " " + result.getProbability(i)); } } catch (Exception e) { System.out.println(e.getMessage()); } } }