/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * SimulatedAnnealing.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.bayes.net.search.global; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.classifiers.bayes.BayesNet; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.core.TechnicalInformationHandler; import weka.core.Utils; /** <!-- globalinfo-start --> * This Bayes Network learning algorithm uses the general purpose search method of simulated annealing to find a well scoring network structure.<br/> * <br/> * For more information see:<br/> * <br/> * R.R. Bouckaert (1995). Bayesian Belief Networks: from Construction to Inference. Utrecht, Netherlands. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @phdthesis{Bouckaert1995, * address = {Utrecht, Netherlands}, * author = {R.R. Bouckaert}, * institution = {University of Utrecht}, * title = {Bayesian Belief Networks: from Construction to Inference}, * year = {1995} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -A <float> * Start temperature</pre> * * <pre> -U <integer> * Number of runs</pre> * * <pre> -D <float> * Delta temperature</pre> * * <pre> -R <seed> * Random number seed</pre> * * <pre> -mbc * Applies a Markov Blanket correction to the network structure, * after a network structure is learned. This ensures that all * nodes in the network are part of the Markov blanket of the * classifier node.</pre> * * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> * * <pre> -Q * Use probabilistic or 0/1 scoring. * (default probabilistic scoring)</pre> * <!-- options-end --> * * @author Remco Bouckaert (rrb@xm.co.nz) * @version $Revision: 8034 $ */ public class SimulatedAnnealing extends GlobalScoreSearchAlgorithm implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -5482721887881010916L; /** start temperature **/ double m_fTStart = 10; /** change in temperature at every run **/ double m_fDelta = 0.999; /** number of runs **/ int m_nRuns = 10000; /** use the arc reversal operator **/ boolean m_bUseArcReversal = false; /** random number seed **/ int m_nSeed = 1; /** random number generator **/ Random m_random; /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.PHDTHESIS); result.setValue(Field.AUTHOR, "R.R. Bouckaert"); result.setValue(Field.YEAR, "1995"); result.setValue(Field.TITLE, "Bayesian Belief Networks: from Construction to Inference"); result.setValue(Field.INSTITUTION, "University of Utrecht"); result.setValue(Field.ADDRESS, "Utrecht, Netherlands"); return result; } /** * * @param bayesNet the bayes net to use * @param instances the data to use * @throws Exception if something goes wrong */ public void search (BayesNet bayesNet, Instances instances) throws Exception { m_random = new Random(m_nSeed); // determine base scores double fCurrentScore = calcScore(bayesNet); // keep track of best scoring network double fBestScore = fCurrentScore; BayesNet bestBayesNet = new BayesNet(); bestBayesNet.m_Instances = instances; bestBayesNet.initStructure(); copyParentSets(bestBayesNet, bayesNet); double fTemp = m_fTStart; for (int iRun = 0; iRun < m_nRuns; iRun++) { boolean bRunSucces = false; double fDeltaScore = 0.0; while (!bRunSucces) { // pick two nodes at random int iTailNode = Math.abs(m_random.nextInt()) % instances.numAttributes(); int iHeadNode = Math.abs(m_random.nextInt()) % instances.numAttributes(); while (iTailNode == iHeadNode) { iHeadNode = Math.abs(m_random.nextInt()) % instances.numAttributes(); } if (isArc(bayesNet, iHeadNode, iTailNode)) { bRunSucces = true; // either try a delete bayesNet.getParentSet(iHeadNode).deleteParent(iTailNode, instances); double fScore = calcScore(bayesNet); fDeltaScore = fScore - fCurrentScore; //System.out.println("Try delete " + iTailNode + "->" + iHeadNode + " dScore = " + fDeltaScore); if (fTemp * Math.log((Math.abs(m_random.nextInt()) % 10000)/10000.0 + 1e-100) < fDeltaScore) { //System.out.println("success!!!"); fCurrentScore = fScore; } else { // roll back bayesNet.getParentSet(iHeadNode).addParent(iTailNode, instances); } } else { // try to add an arc if (addArcMakesSense(bayesNet, instances, iHeadNode, iTailNode)) { bRunSucces = true; double fScore = calcScoreWithExtraParent(iHeadNode, iTailNode); fDeltaScore = fScore - fCurrentScore; //System.out.println("Try add " + iTailNode + "->" + iHeadNode + " dScore = " + fDeltaScore); if (fTemp * Math.log((Math.abs(m_random.nextInt()) % 10000)/10000.0 + 1e-100) < fDeltaScore) { //System.out.println("success!!!"); bayesNet.getParentSet(iHeadNode).addParent(iTailNode, instances); fCurrentScore = fScore; } } } } if (fCurrentScore > fBestScore) { copyParentSets(bestBayesNet, bayesNet); } fTemp = fTemp * m_fDelta; } copyParentSets(bayesNet, bestBayesNet); } // buildStructure /** CopyParentSets copies parent sets of source to dest BayesNet * @param dest destination network * @param source source network */ void copyParentSets(BayesNet dest, BayesNet source) { int nNodes = source.getNrOfNodes(); // clear parent set first for (int iNode = 0; iNode < nNodes; iNode++) { dest.getParentSet(iNode).copy(source.getParentSet(iNode)); } } // CopyParentSets /** * @return double */ public double getDelta() { return m_fDelta; } /** * @return double */ public double getTStart() { return m_fTStart; } /** * @return int */ public int getRuns() { return m_nRuns; } /** * Sets the m_fDelta. * @param fDelta The m_fDelta to set */ public void setDelta(double fDelta) { m_fDelta = fDelta; } /** * Sets the m_fTStart. * @param fTStart The m_fTStart to set */ public void setTStart(double fTStart) { m_fTStart = fTStart; } /** * Sets the m_nRuns. * @param nRuns The m_nRuns to set */ public void setRuns(int nRuns) { m_nRuns = nRuns; } /** * @return random number seed */ public int getSeed() { return m_nSeed; } // getSeed /** * Sets the random number seed * @param nSeed The number of the seed to set */ public void setSeed(int nSeed) { m_nSeed = nSeed; } // setSeed /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(3); newVector.addElement(new Option("\tStart temperature", "A", 1, "-A <float>")); newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>")); newVector.addElement(new Option("\tDelta temperature", "D", 1, "-D <float>")); newVector.addElement(new Option("\tRandom number seed", "R", 1, "-R <seed>")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -A <float> * Start temperature</pre> * * <pre> -U <integer> * Number of runs</pre> * * <pre> -D <float> * Delta temperature</pre> * * <pre> -R <seed> * Random number seed</pre> * * <pre> -mbc * Applies a Markov Blanket correction to the network structure, * after a network structure is learned. This ensures that all * nodes in the network are part of the Markov blanket of the * classifier node.</pre> * * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> * * <pre> -Q * Use probabilistic or 0/1 scoring. * (default probabilistic scoring)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String sTStart = Utils.getOption('A', options); if (sTStart.length() != 0) { setTStart(Double.parseDouble(sTStart)); } String sRuns = Utils.getOption('U', options); if (sRuns.length() != 0) { setRuns(Integer.parseInt(sRuns)); } String sDelta = Utils.getOption('D', options); if (sDelta.length() != 0) { setDelta(Double.parseDouble(sDelta)); } String sSeed = Utils.getOption('R', options); if (sSeed.length() != 0) { setSeed(Integer.parseInt(sSeed)); } super.setOptions(options); } /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[8 + superOptions.length]; int current = 0; options[current++] = "-A"; options[current++] = "" + getTStart(); options[current++] = "-U"; options[current++] = "" + getRuns(); options[current++] = "-D"; options[current++] = "" + getDelta(); options[current++] = "-R"; options[current++] = "" + getSeed(); // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } /** * This will return a string describing the classifier. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses the general purpose search method " + "of simulated annealing to find a well scoring network structure.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } // globalInfo /** * @return a string to describe the TStart option. */ public String TStartTipText() { return "Sets the start temperature of the simulated annealing search. "+ "The start temperature determines the probability that a step in the 'wrong' direction in the " + "search space is accepted. The higher the temperature, the higher the probability of acceptance."; } // TStartTipText /** * @return a string to describe the Runs option. */ public String runsTipText() { return "Sets the number of iterations to be performed by the simulated annealing search."; } // runsTipText /** * @return a string to describe the Delta option. */ public String deltaTipText() { return "Sets the factor with which the temperature (and thus the acceptance probability of " + "steps in the wrong direction in the search space) is decreased in each iteration."; } // deltaTipText /** * @return a string to describe the Seed option. */ public String seedTipText() { return "Initialization value for random number generator." + " Setting the seed allows replicability of experiments."; } // seedTipText /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8034 $"); } } // SimulatedAnnealing