/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * GlobalScoreSearchAlgorithm.java * Copyright (C) 2004-2012 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.bayes.net.search.global; import java.util.Enumeration; import java.util.Vector; import weka.classifiers.bayes.BayesNet; import weka.classifiers.bayes.net.ParentSet; import weka.classifiers.bayes.net.search.SearchAlgorithm; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.RevisionUtils; import weka.core.SelectedTag; import weka.core.Tag; import weka.core.Utils; /** <!-- globalinfo-start --> * This Bayes Network learning algorithm uses cross validation to estimate classification accuracy. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -mbc * Applies a Markov Blanket correction to the network structure, * after a network structure is learned. This ensures that all * nodes in the network are part of the Markov blanket of the * classifier node.</pre> * * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> * * <pre> -Q * Use probabilistic or 0/1 scoring. * (default probabilistic scoring)</pre> * <!-- options-end --> * * @author Remco Bouckaert * @version $Revision: 8034 $ */ public class GlobalScoreSearchAlgorithm extends SearchAlgorithm { /** for serialization */ static final long serialVersionUID = 7341389867906199781L; /** points to Bayes network for which a structure is searched for **/ BayesNet m_BayesNet; /** toggle between scoring using accuracy = 0-1 loss (when false) or class probabilities (when true) **/ boolean m_bUseProb = true; /** number of folds for k-fold cross validation **/ int m_nNrOfFolds = 10; /** constant for score type: LOO-CV */ final static int LOOCV = 0; /** constant for score type: k-fold-CV */ final static int KFOLDCV = 1; /** constant for score type: Cumulative-CV */ final static int CUMCV = 2; /** the score types **/ public static final Tag[] TAGS_CV_TYPE = { new Tag(LOOCV, "LOO-CV"), new Tag(KFOLDCV, "k-Fold-CV"), new Tag(CUMCV, "Cumulative-CV") }; /** * Holds the cross validation strategy used to measure quality of network */ int m_nCVType = LOOCV; /** * performCV returns the accuracy calculated using cross validation. * The dataset used is m_Instances associated with the Bayes Network. * * @param bayesNet : Bayes Network containing structure to evaluate * @return accuracy (in interval 0..1) measured using cv. * @throws Exception whn m_nCVType is invalided + exceptions passed on by updateClassifier */ public double calcScore(BayesNet bayesNet) throws Exception { switch (m_nCVType) { case LOOCV: return leaveOneOutCV(bayesNet); case CUMCV: return cumulativeCV(bayesNet); case KFOLDCV: return kFoldCV(bayesNet, m_nNrOfFolds); default: throw new Exception("Unrecognized cross validation type encountered: " + m_nCVType); } } // calcScore /** * Calc Node Score With Added Parent * * @param nNode node for which the score is calculate * @param nCandidateParent candidate parent to add to the existing parent set * @return log score * @throws Exception if something goes wrong */ public double calcScoreWithExtraParent(int nNode, int nCandidateParent) throws Exception { ParentSet oParentSet = m_BayesNet.getParentSet(nNode); Instances instances = m_BayesNet.m_Instances; // sanity check: nCandidateParent should not be in parent set already for (int iParent = 0; iParent < oParentSet.getNrOfParents(); iParent++) { if (oParentSet.getParent(iParent) == nCandidateParent) { return -1e100; } } // set up candidate parent oParentSet.addParent(nCandidateParent, instances); // calculate the score double fAccuracy = calcScore(m_BayesNet); // delete temporarily added parent oParentSet.deleteLastParent(instances); return fAccuracy; } // calcScoreWithExtraParent /** * Calc Node Score With Parent Deleted * * @param nNode node for which the score is calculate * @param nCandidateParent candidate parent to delete from the existing parent set * @return log score * @throws Exception if something goes wrong */ public double calcScoreWithMissingParent(int nNode, int nCandidateParent) throws Exception { ParentSet oParentSet = m_BayesNet.getParentSet(nNode); Instances instances = m_BayesNet.m_Instances; // sanity check: nCandidateParent should be in parent set already if (!oParentSet.contains( nCandidateParent)) { return -1e100; } // set up candidate parent int iParent = oParentSet.deleteParent(nCandidateParent, instances); // calculate the score double fAccuracy = calcScore(m_BayesNet); // reinsert temporarily deleted parent oParentSet.addParent(nCandidateParent, iParent, instances); return fAccuracy; } // calcScoreWithMissingParent /** * Calc Node Score With Arrow reversed * * @param nNode node for which the score is calculate * @param nCandidateParent candidate parent to delete from the existing parent set * @return log score * @throws Exception if something goes wrong */ public double calcScoreWithReversedParent(int nNode, int nCandidateParent) throws Exception { ParentSet oParentSet = m_BayesNet.getParentSet(nNode); ParentSet oParentSet2 = m_BayesNet.getParentSet(nCandidateParent); Instances instances = m_BayesNet.m_Instances; // sanity check: nCandidateParent should be in parent set already if (!oParentSet.contains( nCandidateParent)) { return -1e100; } // set up candidate parent int iParent = oParentSet.deleteParent(nCandidateParent, instances); oParentSet2.addParent(nNode, instances); // calculate the score double fAccuracy = calcScore(m_BayesNet); // restate temporarily reversed arrow oParentSet2.deleteLastParent(instances); oParentSet.addParent(nCandidateParent, iParent, instances); return fAccuracy; } // calcScoreWithReversedParent /** * LeaveOneOutCV returns the accuracy calculated using Leave One Out * cross validation. The dataset used is m_Instances associated with * the Bayes Network. * @param bayesNet : Bayes Network containing structure to evaluate * @return accuracy (in interval 0..1) measured using leave one out cv. * @throws Exception passed on by updateClassifier */ public double leaveOneOutCV(BayesNet bayesNet) throws Exception { m_BayesNet = bayesNet; double fAccuracy = 0.0; double fWeight = 0.0; Instances instances = bayesNet.m_Instances; bayesNet.estimateCPTs(); for (int iInstance = 0; iInstance < instances.numInstances(); iInstance++) { Instance instance = instances.instance(iInstance); instance.setWeight(-instance.weight()); bayesNet.updateClassifier(instance); fAccuracy += accuracyIncrease(instance); fWeight += instance.weight(); instance.setWeight(-instance.weight()); bayesNet.updateClassifier(instance); } return fAccuracy / fWeight; } // LeaveOneOutCV /** * CumulativeCV returns the accuracy calculated using cumulative * cross validation. The idea is to run through the data set and * try to classify each of the instances based on the previously * seen data. * The data set used is m_Instances associated with the Bayes Network. * @param bayesNet : Bayes Network containing structure to evaluate * @return accuracy (in interval 0..1) measured using leave one out cv. * @throws Exception passed on by updateClassifier */ public double cumulativeCV(BayesNet bayesNet) throws Exception { m_BayesNet = bayesNet; double fAccuracy = 0.0; double fWeight = 0.0; Instances instances = bayesNet.m_Instances; bayesNet.initCPTs(); for (int iInstance = 0; iInstance < instances.numInstances(); iInstance++) { Instance instance = instances.instance(iInstance); fAccuracy += accuracyIncrease(instance); bayesNet.updateClassifier(instance); fWeight += instance.weight(); } return fAccuracy / fWeight; } // LeaveOneOutCV /** * kFoldCV uses k-fold cross validation to measure the accuracy of a Bayes * network classifier. * @param bayesNet : Bayes Network containing structure to evaluate * @param nNrOfFolds : the number of folds k to perform k-fold cv * @return accuracy (in interval 0..1) measured using leave one out cv. * @throws Exception passed on by updateClassifier */ public double kFoldCV(BayesNet bayesNet, int nNrOfFolds) throws Exception { m_BayesNet = bayesNet; double fAccuracy = 0.0; double fWeight = 0.0; Instances instances = bayesNet.m_Instances; // estimate CPTs based on complete data set bayesNet.estimateCPTs(); int nFoldStart = 0; int nFoldEnd = instances.numInstances() / nNrOfFolds; int iFold = 1; while (nFoldStart < instances.numInstances()) { // remove influence of fold iFold from the probability distribution for (int iInstance = nFoldStart; iInstance < nFoldEnd; iInstance++) { Instance instance = instances.instance(iInstance); instance.setWeight(-instance.weight()); bayesNet.updateClassifier(instance); } // measure accuracy on fold iFold for (int iInstance = nFoldStart; iInstance < nFoldEnd; iInstance++) { Instance instance = instances.instance(iInstance); instance.setWeight(-instance.weight()); fAccuracy += accuracyIncrease(instance); instance.setWeight(-instance.weight()); fWeight += instance.weight(); } // restore influence of fold iFold from the probability distribution for (int iInstance = nFoldStart; iInstance < nFoldEnd; iInstance++) { Instance instance = instances.instance(iInstance); instance.setWeight(-instance.weight()); bayesNet.updateClassifier(instance); } // go to next fold nFoldStart = nFoldEnd; iFold++; nFoldEnd = iFold * instances.numInstances() / nNrOfFolds; } return fAccuracy / fWeight; } // kFoldCV /** accuracyIncrease determines how much the accuracy estimate should * be increased due to the contribution of a single given instance. * * @param instance : instance for which to calculate the accuracy increase. * @return increase in accuracy due to given instance. * @throws Exception passed on by distributionForInstance and classifyInstance */ double accuracyIncrease(Instance instance) throws Exception { if (m_bUseProb) { double [] fProb = m_BayesNet.distributionForInstance(instance); return fProb[(int) instance.classValue()] * instance.weight(); } else { if (m_BayesNet.classifyInstance(instance) == instance.classValue()) { return instance.weight(); } } return 0; } // accuracyIncrease /** * @return use probabilities or not in accuracy estimate */ public boolean getUseProb() { return m_bUseProb; } // getUseProb /** * @param useProb : use probabilities or not in accuracy estimate */ public void setUseProb(boolean useProb) { m_bUseProb = useProb; } // setUseProb /** * set cross validation strategy to be used in searching for networks. * @param newCVType : cross validation strategy */ public void setCVType(SelectedTag newCVType) { if (newCVType.getTags() == TAGS_CV_TYPE) { m_nCVType = newCVType.getSelectedTag().getID(); } } // setCVType /** * get cross validation strategy to be used in searching for networks. * @return cross validation strategy */ public SelectedTag getCVType() { return new SelectedTag(m_nCVType, TAGS_CV_TYPE); } // getCVType /** * * @param bMarkovBlanketClassifier */ public void setMarkovBlanketClassifier(boolean bMarkovBlanketClassifier) { super.setMarkovBlanketClassifier(bMarkovBlanketClassifier); } /** * * @return */ public boolean getMarkovBlanketClassifier() { return super.getMarkovBlanketClassifier(); } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(); newVector.addElement(new Option( "\tApplies a Markov Blanket correction to the network structure, \n" + "\tafter a network structure is learned. This ensures that all \n" + "\tnodes in the network are part of the Markov blanket of the \n" + "\tclassifier node.", "mbc", 0, "-mbc")); newVector.addElement( new Option( "\tScore type (LOO-CV,k-Fold-CV,Cumulative-CV)", "S", 1, "-S [LOO-CV|k-Fold-CV|Cumulative-CV]")); newVector.addElement(new Option("\tUse probabilistic or 0/1 scoring.\n\t(default probabilistic scoring)", "Q", 0, "-Q")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } // listOptions /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -mbc * Applies a Markov Blanket correction to the network structure, * after a network structure is learned. This ensures that all * nodes in the network are part of the Markov blanket of the * classifier node.</pre> * * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> * * <pre> -Q * Use probabilistic or 0/1 scoring. * (default probabilistic scoring)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setMarkovBlanketClassifier(Utils.getFlag("mbc", options)); String sScore = Utils.getOption('S', options); if (sScore.compareTo("LOO-CV") == 0) { setCVType(new SelectedTag(LOOCV, TAGS_CV_TYPE)); } if (sScore.compareTo("k-Fold-CV") == 0) { setCVType(new SelectedTag(KFOLDCV, TAGS_CV_TYPE)); } if (sScore.compareTo("Cumulative-CV") == 0) { setCVType(new SelectedTag(CUMCV, TAGS_CV_TYPE)); } setUseProb(!Utils.getFlag('Q', options)); super.setOptions(options); } // setOptions /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[4 + superOptions.length]; int current = 0; if (getMarkovBlanketClassifier()) options[current++] = "-mbc"; options[current++] = "-S"; switch (m_nCVType) { case (LOOCV) : options[current++] = "LOO-CV"; break; case (KFOLDCV) : options[current++] = "k-Fold-CV"; break; case (CUMCV) : options[current++] = "Cumulative-CV"; break; } if (!getUseProb()) { options[current++] = "-Q"; } // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } // getOptions /** * @return a string to describe the CVType option. */ public String CVTypeTipText() { return "Select cross validation strategy to be used in searching for networks." + "LOO-CV = Leave one out cross validation\n" + "k-Fold-CV = k fold cross validation\n" + "Cumulative-CV = cumulative cross validation." ; } // CVTypeTipText /** * @return a string to describe the UseProb option. */ public String useProbTipText() { return "If set to true, the probability of the class if returned in the estimate of the "+ "accuracy. If set to false, the accuracy estimate is only increased if the classifier returns " + "exactly the correct class."; } // useProbTipText /** * This will return a string describing the search algorithm. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses cross validation to estimate " + "classification accuracy."; } // globalInfo /** * @return a string to describe the MarkovBlanketClassifier option. */ public String markovBlanketClassifierTipText() { return super.markovBlanketClassifierTipText(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 8034 $"); } }